K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

Đặt \(A\left(x\right)=x^4+x^2+6\)

Ta có :\(A\left(x\right)=0\Leftrightarrow x^4+x^2+6=0\)

\(\Rightarrow x^2+x^4=-6\)

Ta có :\(x^2\ge0;x^4\ge0\Leftrightarrow x^2+x^4\ge0\)

\(\Rightarrow A\left(x\right)\)vô nghiệm

28 tháng 4 2018

Ta có \(x^4\ge0\)với mọi x

         \(x^2\ge0\) với mọi x

\(\Rightarrow\) \(x^4+x^2+6\ge6\)với mọi x

\(\Rightarrow x^4+x^2+6>0\) với mọi x

\(\Rightarrow\) đa thức \(x^4+x^2+6\) không có nghiệm

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Lời giải:

1.

$4x+9=0$

$4x=-9$

$x=\frac{-9}{4}$
2.

$-5x+6=0$

$-5x=-6$

$x=\frac{6}{5}$

3.

$x^2-1=0$

$x^2=1=1^2=(-1)^2$

$x=\pm 1$

4.

$x^2-9=0$

$x^2=9=3^2=(-3)^2$

$x=\pm 3$

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

5.

$x^2-x=0$

$x(x-1)=0$

$x=0$ hoặc $x-1=0$

$x=0$ hoặc $x=1$

6.

$x^2-2x=0$

$x(x-2)=0$

$x=0$ hoặc $x-2=0$

$x=0$ hoặc $x=2$

7.

$x^2-3x=0$

$x(x-3)=0$

$x=0$ hoặc $x-3=0$ 

$x=0$ hoặc $x=3$

8.

$3x^2-4x=0$

$x(3x-4)=0$

$x=0$ hoặc $3x-4=0$

$x=0$ hoặc $x=\frac{4}{3}$

10 tháng 5 2022

Cho `f(x)=0`

`=>(x^2-2)(3x^4+6)=0`

   Mà `3x^4+6 > 0 AA x`

`=>x^2=2`

`=>x^2=2`

`=>x=+-\sqrt{2}`

Vậy nghiệm của đa thức `f(x)` là `x=\sqrt{2}` hoặc `x=-\sqrt{2}`

10 tháng 5 2022

cho f(X) = 0

\(=>\left(2x-2\right)\left(3x.4+6\right)=0\)

\(=>\left[{}\begin{matrix}2x-2=0\\12x+6=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=2\\12x=-6\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

17 tháng 4 2022

a) x2-x-6 =0

 x2-3x+2x-6=0

(x2-3x)+(2x-6)=0

x(x-3)+2(x-3)=0

(x+2)(x-3)=0

=>x+2=0 hoặc x-3= 0

x  = -2                  x= 3

vậy x  = -2 ,x= 3 là nghiệm của đa thức

b) 3x2+11x+6=0

3x2+9x+2x +6=0

3x(x+3)+2(x +3)=0

(3x+2)(x+3)=0

=> 3x+2=0 hoặc x+3=0

x = -2/3               x = -3

vậy x = -2/3 ,x = -3 là nghiệm của đa thức

10 tháng 6 2020

\(f\left(x\right)=x2-7x+6\)

ta có f(x)=0

hay\(x2-7x+6=0\)

\(\Leftrightarrow x2-7x=-6\)

\(\Leftrightarrow x\left(-5\right)=-6\)

\(\Leftrightarrow x=\frac{6}{5}\)

vậy nghiệm của đa thức f(x) là 6/5

10 tháng 6 2020

\(f\left(x\right)=x^2-7x+6\)

\(f\left(x\right)=0\Leftrightarrow x^2-7x+6=0\)

                   \(\Leftrightarrow x^2-x-6x+6=0\)

                   \(\Leftrightarrow x.\left(x-1\right)-6.\left(x-1\right)=0\)

                   \(\Leftrightarrow\left(x-1\right).\left(x-6\right)=0\)

                   \(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}z=1\\x=6\end{cases}}\)

Vậy phương trình có 2 nghiệm \(x=\left\{1,6\right\}\)

17 tháng 4 2022

tên bin là tên con chó nhà tui đó

12 tháng 8 2021

Phần nào bạn ko nhìn thấy thì bảo mk nhé

undefinedundefined

12 tháng 8 2021

Ko có phần d nhé

phần e  thêm "=0" vào cuối nhé

22 tháng 7 2021

\(n\left(x\right)=3x-6=0\)

\(\Rightarrow x=2\)

\(n\left(x\right)=x^2-36=0\)

\(\Rightarrow x^2=\left(\pm6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)

22 tháng 7 2021

undefined

22 tháng 4 2018

ta có 2 là nghiệm của đa thức x2 -ax+6 => 22-a.2+6=0

=>4-2a+6=0  => 2a=10

=> a=5

vậy a=5 .thay a=5 vào đa thức ta được x2-5x+6

Để đa thức có nghiệm => x2-5x+6=0 =>x2-3x-2x+6=0

=> x(x-3)-2(x-3)=0

=> (x-2)(x-3)=0

\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)

Vậy nghiệm còn lại của đa thức là 3

tk cho mk nha bn

kb vs mk  nha

*****Chúc bạn học giỏi*****

14 tháng 9 2021

a) \(4x+9=0\Leftrightarrow4x=-9\Leftrightarrow x=-\dfrac{9}{4}\)

b) \(-5x+6=0\Leftrightarrow5x=6\Leftrightarrow x=\dfrac{6}{5}\)

c) \(x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

d) \(x^2-9=0\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

e) \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

f) \(x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

g) \(\left(x-4\right)\left(x^2+1\right)=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)( do \(x^2+1\ge1>0\))

h) \(3x^2-4x=0\Leftrightarrow x\left(3x-4\right)=0\Leftrightarrow\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)

i) \(x^2+9=0\Leftrightarrow x^2=-9\)( vô lý do \(x^2\ge0>-9\))

Vậy \(x\in\left\{\varnothing\right\}\)

a: f(x)=3x^4+2x^3+6x^2-x+2

g(x)=-3x^4-2x^3-5x^2+x-6

b: H(x)=f(x)+g(x)

=3x^4+2x^3+6x^2-x+2-3x^4-2x^3-5x^2+x-6

=x^2-4

f(x)-g(x)

=3x^4+2x^3+6x^2-x+2+3x^4+2x^3+5x^2-x+6

=6x^4+4x^3+11x^2-2x+8

c: H(x)=0

=>x^2-4=0

=>x=2 hoặc x=-2