Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(2-x\right)\cdot2\cdot\left(2-x\right)\cdot1212\cdot\left(x-2\right)\cdot2\cdot\left(x-2\right)\cdot2=0\)
\(4\left(2-x\right)^2\cdot4848\left(x-2\right)^2=0\)
\(19392\left(2-x\right)^2\left(x-2\right)^2=0\)
\(\left(2-x\right)^2\left(x-2\right)^2=0\)
\(TH1:\left(2-x\right)^2=0\Rightarrow2-x=0\Rightarrow x=2\)
\(TH2:\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
Vậy x = 2
<br class="Apple-interchange-newline"><div id="inner-editor"></div>2(2−x)·2·(2−x)·1212·(x−2)·2·(x−2)·2=0
4(2−x)2·4848(x−2)2=0
19392(2−x)2(x−2)2=0
(2−x)2(x−2)2=0
TH1:(2−x)2=0⇒2−x=0⇒x=2
TH2:(x−2)2=0⇒x−2=0⇒x=2
x = 2
Đa thức f(x) có nghiệm là -2 suy ra: \(\left(-2\right)^3+2.\left(-2\right)^2+\left(-2\right)a+1=0\)
\(\Rightarrow\left(-2\right)^3+2.2^2+\left(-2\right)a=0-1\)
\(\Rightarrow\left(-2\right)^3+2^3+\left(-2\right)a=-1\)
\(\Rightarrow\left(-2\right)a=-1\)
\(\Rightarrow a=\left(-1\right):\left(-2\right)=\frac{1}{2}\)
Vậy \(a=\frac{1}{2}\)
Để A có nghiệm \(\Leftrightarrow A=0\)
\(\Leftrightarrow2x^3+x^2+x-1=0\)
\(\Leftrightarrow2x^3-x^2+2x^2-x+2x-1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+x+1\right)=0\)
Mà : \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy : để đa thức A có nghiệm thì \(x=\frac{1}{2}\)
Đặt \(f\left(x\right)=2.\left(2-x\right)+\left(x-2\right)^2\)
Ta có: \(f\left(x\right)=0\Leftrightarrow2.\left(2-x\right)+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2.\left(2-x\right)=0\\\left(x-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=2\end{cases}}\)
Vậy x=2 là nghiệm của đa thức trên
Đặt \(F\left(x\right)=x^2-16=0\)( mình sửa đề nhé )
\(\Leftrightarrow x^2=16\Leftrightarrow x=4;x=-4\)
Thay x = 4 vào G(x) ta được : \(32+4a+b=0\)(*)
Thay x = -4 vào G(x) ta được : \(32-4a+b=0\)(**)
Lấy (*) + (**) ta được : \(64+2b=0\Leftrightarrow2b=-64\Leftrightarrow b=-32\)(***)
Thay (***) vào (*) \(32+4a-32=0\Leftrightarrow a=0\)
Vậy ( a ; b ) = ( 0 ; -32 )
Đặt X^4+X^2+1=0
X^4+X^2=-1
Vì X^4 lớn hơn hoặc bằng 0
X^2 cũng lớn hơn hoặc bằng 0
=> (X^4+X^2)>=0
Vậy đa thức trên ko có nghiệm
x^4 + x^2 + 1 = 0
x62 ( x^2 + 1 ) = 0
Suy ra x^2 =0
Suy ra x = 0
x^2 + 1 = 0
x^2 = ( -1 )^4
x = 1 hoặc -1
Vậy x = 0 ; 1 ; -1 là nghiệm của đa thức trên