K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

Ta có x(2x+2/3)=0 

    <=> x=0 hoặc 2x+2/3=0

    <=> x=0 hoặc 2x=-2/3

    <=> x=0 hoặc x=-2/6

19 tháng 5 2022

Cho `H(x)=0`

`=>4x^2-64=0`

`=>(2x-8)(2x+8)=0`

`@TH1:2x-8=0=>2x=8=>x=4`

`@TH2:2x+8=0=>2x=-8=>x=-4`

Vậy nghiệm của `H(x)` là `x=4` hoặc `x=-4`

______________________________________________

Cho `K(x)=0`

`=>(2x+8)^2=0`

`=>2x+8=0`

`=>2x=-8`

`=>x=-4`

Vậy nghiệm của `K(x)` là `x=-4`

19 tháng 5 2022

 

b. K(x) = (2x+8) . 2 = 0

=> 4x + 16 = 0

=> 4x =  -16

=> x = -4

13 tháng 5 2017

tui biết chết liền đang mắc câu đó

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

1. F(-1) = 2.(-1)2 – 3. (-1) – 2 = 2.1 + 3 – 2 = 3

F(0) = 2. 02 – 3 . 0 – 2 = -2

F(1) = 2.12 – 3.1 – 2 = 2 – 3 – 2 = -3

F(2) = 2.22 – 3.2 – 2 = 8 – 6 – 2 = 0

Vì F(2) = 0 nên 0 là 1 nghiệm của đa thức F(x)

2. Vì đa thức E(x) có hệ số tự do bằng 0 nên có một nghiệm là x = 0.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

4 tháng 5 2023

\(Câu8\)

\(a,A=\dfrac{1}{2}x^3\times\dfrac{8}{5}x^2=\left(\dfrac{1}{2}\times\dfrac{8}{5}\right)x^{3+2}=\dfrac{4}{5}x^5\)

b, \(P\left(0\right)=0^2-5.0+6=6\\ P\left(2\right)=2^2-5.2+6=0\)

Câu 9

\(a,A\left(x\right)+B\left(x\right)=5x^3+x^2-3x+5+5x^3+x^2+2x-3\\ =\left(5x^3+5x^3\right)+\left(x^2+x^2\right)+\left(-3x+2x\right)+\left(5-3\right)\\ =10x^3+2x^2-x+2\)

\(b,H\left(x\right)=A\left(x\right)-B\left(x\right)=5x^3+x^2-3x+5-\left(5x^3+x^2+2x-3\right)\\ =5x^3+x^2-3x+5-5x^3-x^2-2x+3\\ =\left(5x^3-5x^3\right)+\left(x^2-x^2\right) +\left(-3x-2x\right)+\left(5+3\right)\\ =-5x+8\)

\(H\left(x\right)=0\\ \Rightarrow-5x+8=0\\ \Rightarrow x=\dfrac{8}{5}\)

vậy nghiệm của đa thức là \(x=\dfrac{8}{5}\)