Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Như thế này :
x^3 - 8x^2 + x + 42 = x^3 - 7x^2 - x^2 + 7x - 6x + 42
= ( x^3 - x^2 ) - ( 7x^2 - 7x ) - ( 6x - 42 )
= x^2.( x - 1 ) - 7x.( x - 1 ) - 6.( x - 7 )
= ( x^2 - 7x ).( x - 1 ) - 6.( x - 7 )
= x.( x- 7 ).( x - 1 ) - 6.( x - 7 ) = [ x.( x - 1 ) - 6 ].( x - 7 )
x^4 + 5x^3 - 7x^2 - 41x - 30 = x^4 + 5x^3 - 7x^2 - 35x - 6x - 30
= x.( x^3 + 6 ) + 5.( x^3 + 6 ) - 7x.( x + 5 )
= ( x + 5 ) ( x^3 + 6 ) - 7x.( x + 5 )
= ( x + 5 ).( x^3 - 7x + 5 )
CHÚC BẠN HỌC TỐT
Câu 1: Đa thức không phân tích được thành nhân tử
Câu 2:
\(x^3-8x^2+x+42\)
\(=x^3+2x^2-10x^2-20x+21x+42\)
\(=x^2(x+2)-10x(x+2)+21(x+2)\)
\(=(x^2-10x+21)(x+2)\)
\(=(x^2-3x-7x+21)(x+2)\)
\(=[x(x-3)-7(x-3)](x+2)=(x-3)(x-7)(x+2)\)
Câu 3:
Đa thức không phân tích được thành nhân tử dù sửa dấu = thành cộng hoặc trừ.
x^2-2x+3 2x^3-9x^2+mx-15 2x-5 2x^3-4x^2+6x -5x^2+(m-6)x-15 -5x^2+10x-15 (m-16)x
Để đa thức 2x3-9x2+mx-15 chia hết cho đa thức x2-2x+3 thì \(\left(m-16\right)x=0\Rightarrow m-16=0\Rightarrow m=16\)
Vậy m = 16 thì đa thức 2x3-9x2+mx-15 chia hết cho đa thức x2-2x+3
2x^3-9x^2+mx-15 x^2-2x+3 2x+13 2x^3-4x^2+6x 13x^2+x(m-6)-15 13x^2-26x +39 x(m+20)-54
Đến đây làm sao nữa ta ?
Đặt A = x4 - 9x3 + 9x2 + 41x - 42 = (x4 - 8x3 +x2 + 42x) - (x3 - 8x2 + x + 42) = (x-1)(x3 - 8x2 + x + 42) = (x-1)[(x3 - 10x2 + 21x) + (x2 - 10x + 21)] = (x-1)(x+2)(x2 - 10x + 21) = (x-1)(x+2)[(x2 - 3x) - (7x - 21)]=(x-1)(x-2)(x-3)(x-7)
\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\) <=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
\(\orbr{\begin{cases}x-3=0\\x-7=0\end{cases}}\) <=>\(\orbr{\begin{cases}x=3\\x=7\end{cases}}\)
Vậy S = {1;2;3;7}
x là 2 bị sai rồi