Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M = x3 + x2y - 2x2 - xy - y2 +3y + x + 2017
= x2(x + y - 2) - y(x + y - 2) + x + y - 2 + 2019
thay x + y - 2 = 0 vào M ta có : M = x2.0 - y.0 + 0 + 2019
= 2019
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(=\left(x+y-2\right)\left(x^2-y+1\right)+2019\)
Thay \(x+y-2=0\)vào đa thức ta được:
\(M=0.\left(x^2-y+1\right)+2019=2019\)
Để x là nghiệm của đa thức P(x)
\(\Leftrightarrow P\left(x\right)=0\)
\(\Rightarrow x^2+4x+3=0\)
\(\Rightarrow x^2+2x+2x+3=0\)
\(\Rightarrow x\times\left(x+2\right)\times2x+4-1=0\)
\(\Rightarrow x\times\left(x+2\right)\times2\times\left(x+2\right)-1=0\)
\(\Rightarrow\left(x+2\right)^2=1\)
\(\Rightarrow x=-1hayx=-3\)
\(P\left(x\right)=x^2+4x+3\)
Ta có: \(P\left(x\right)=x^2+4x+3\)
\(P\left(x\right)=x^2+x+3x+3\)
\(P\left(x\right)=x.\left(x+1\right)+3.\left(x+1\right)\)
\(P\left(x\right)=\left(x+1\right).\left(x+3\right)\)
Ta có: P(x)=0 thì \(\left(x+1\right).\left(x+3\right)=0\)
\(\Leftrightarrow x+1=0\) hoặc \(x+3=0\)
\(\Leftrightarrow x=-1\) hoặc \(x=-3\)
Vậy \(x\in\left\{-1;-3\right\}\) là nghiệm của đa thức P(x)
Chúc bạn học tốt!!!
a)\(x^2-4=0\Rightarrow x^2=4\Rightarrow x=-2,2\)
b)x(1-1/2x)=0=>x=0 hoặc 1-1/2x=0
=>x=0 hoặc 2
hk tốt
a) \(x^2-4\)
đặt \(x^2-4=0\)
\(x^2-4=0\)
\(x^2=0+4\)
\(x^2=4\)
\(x^2=\left(\pm2\right)^2\)
\(x=\pm2\)
Vậy \(x=\pm2\)là nghiệm của đa thức \(x^2-4\)
b) \(x-\frac{1}{2}x^2\)
đặt \(x-\frac{1}{2}x^2=0\)
\(x\left(1-\frac{1}{2}x\right)=0\)
\(TH1:x=0\) \(TH2:1-\frac{1}{2}x=0\)
\(\frac{1}{2}x=1-0\)
\(\frac{1}{2}x=1\)
\(x=1:\frac{1}{2}\)
\(x=2\)
Vậy x=0,2 là nghiệm của đa thức \(x-\frac{1}{2}x^2\)
DO x^4;3x^2 lớn hơn hoặc = 0( bn tự viết dấu) vs mọi x => x^4 + 3x^2 + 3 lớn hơn hoặc = 0 vs mọi x => P(x) = ... vô nghiệm
Ta có :
\(P\left(x\right)=11-2x^3+4x^4+5x-x^4-2x\)
\(\Rightarrow P\left(x\right)=\left(4x^4-x^4\right)-2x^3+\left(5x-2x\right)+11\)
\(\Rightarrow P\left(x\right)=3x^4-2x^3+3x+11\)
\(Q\left(x\right)=2x^4-x+4-x^3+3x-5x^4+3x^3\)
\(\Rightarrow Q\left(x\right)=\left(2x^4-5x^4\right)+\left(3x^3-x^3\right)+\left(3x-x\right)+4\)
\(\Rightarrow Q\left(x\right)=-3x^4+2x^3+2x+4\)
\(H\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(\Rightarrow H\left(x\right)=3x^4-2x^3+3x+11+-3x^4+2x^3+2x+4\)
\(\Rightarrow H\left(x\right)=5x+15\)
\(\Rightarrow H\left(x\right)=5\left(x+3\right)\)
Xét \(H\left(x\right)=0\)
\(\Rightarrow5\left(x+3\right)=0\)
\(\Rightarrow x+3=0\)
\(\Rightarrow x=-3\)
Vậy \(x=-3\)là nghiệm của đa thức \(H\left(x\right)\)
Mn giúp mk vs😭😢😢😢