Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cho x2-1=0
x2=1
x= 1 hoặc -1
b)Cho P(x)=0
-x2 + 4x - 5 = 0
-x2 + 4x = 5
-x . x + 4x = 5
x(-x+4) = 5
TH1: x= 5
TH2: -x+4 = 5
-x= 1
x=-1
xong bạn thay số rồi kết luận nhá
a,\(x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
KL:...
b,\(P\left(x\right)=-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left[\left(x-2\right)^2+1\right]\le1\forall x\)
\(\Rightarrow VN\)
Đặt x2+4x-5 = 0
(x2 - 1) + (4x-4) = 0
(x2-x+x-1) + (4x-4) = 0
( x.(x-1) + x-1 ) + (4x-4) = 0
(x-1).(x+1) + 4.(x-1) = 0
(x-1) . (x+1+4) = 0
(x-1) . (x+5) = 0
Suy ra x-1 = 0 hoặc x+5=0
Xét x-1=0 => x = 1
Xét x+5 = 0 => x=-5
Vậy đa thức trên có 2 nghiệm là x1=1 và x2 = -5
f(x)=x^3+x^2+3x^2+3x-5x-5
f(x)=(x+1)(x^2+3x+5)
f(x)=(x+1)(x^2+2 nhân x nhân 3/2 +9/4 -9/4 +5)
f(x)=(x+1)((x+3/2)^2+11/4)
Nghiệm của f(x) là x=-1
a) dễ tự làm
b) A(x) có bậc 6
hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3
B(x) có bậc 6
hệ số: 2 ; -5 ; 3 ; 4 ; 7
c) bó tay
d) cx bó tay
Xét \(x^2-2=0\)
\(\Rightarrow x^2=0+2\)
\(\Rightarrow x^2=2\)
\(\Rightarrow\orbr{\begin{cases}x=-\sqrt{2}\\x=\sqrt{2}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=-\sqrt{2}\\x=\sqrt{2}\end{cases}}\)là nghiệm của đa thức \(x^2-2\)
b ) Xét \(\left(4x-3\right)\left(5+x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-3=0\\5+x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x=3\\x=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-5\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=\frac{3}{4}\\x=-5\end{cases}}\)là nghiệm của đa thức \(\left(4x-3\right)\left(5+x\right)\)
Chúc bạn học tốt !!!
+ x2 - 2
Ta có \(f\left(x\right)=x^2-2\)
Khi f (x) = 0
=> \(x^2-2=0\)
=> \(x^2=2\)
=> \(x=\pm\sqrt{2}\)
Vậy f (x) có 2 nghiệm: x1 = \(\sqrt{2}\); x2 = \(-\sqrt{2}\).
+ (4x - 3) (5 + x)
Ta có \(g\left(x\right)=\left(4x-3\right)\left(5+x\right)\)
Khi g (x) = 0
=> \(\left(4x-3\right)\left(5+x\right)=0\)
=> \(\orbr{\begin{cases}4x-3=0\\5+x=0\end{cases}}\)=> \(\orbr{\begin{cases}4x=3\\x=-5\end{cases}}\)=> \(\orbr{\begin{cases}x=\frac{3}{4}\\x=-5\end{cases}}\)
Vậy đa thức f (x) có 2 nghiệm: x1 = \(\frac{3}{4}\); x2 = -5.
Rút gọn P(x), ta được: P(x) = \(x^2-4\)
Có: P(x) = \(x^2-4=0\)
\(\Rightarrow x^2=4\)
\(\Rightarrow x\in\left\{-2;2\right\}\)
Vậy x = -2 hoặc x = 2 là nghiệm của đa thức P(x)
xét P(x) có nghiệm <=>P(x)=0
<=>4x2 - 2x - 3x2 - 5 + 2x + 1=0
<=>x2-4=0
<=>(x-2)(x+2)=0
<=>x-2=0 hoặc x+2=0
<=>x=2 hoặc -2
\(x^2-4x+5=0\)
<=>\(x^2-4x+4+1=0\)
<=>\(\left(x-2\right)^2=-1\)
Vì (x-2)2>=0 mà -1<0 nên đa thức trên vô nghiệm