Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2\geq 0, \forall x\in\mathbb{R}$
$\Rightarrow Q(x)=x^2+\sqrt{3}\geq \sqrt{3}>0$ với mọi $x\in\mathbb{R}$
Do đó đa thức $Q(x)$ vô nghiệm.
Cho \(\left(2x-3\right)\left(3x-5\right)=0\)
\(\Rightarrow\hept{\begin{cases}2x-3=0\\3x-5=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x=3\\3x=5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\x=\frac{5}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{3}{2};\frac{5}{3}\right\}\)
\(\left(2x-3\right)\left(3x-5\right)\)
Đa thức có nghiệm : \(\left(2x-3\right)\left(3x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\3x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x=3\\3x=5\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{5}{3}\end{cases}}\)
Kết luận : Vậy nghiệm của đa thức là \(\frac{3}{2}\)và \(\frac{5}{3}\)
cho f(x) = 1/2x +4 =0
=> 1/2 x = 0-4
=> 1/2x = -4
=> x = -4 : 1/2
=> x= -8
vậy x=-8 là nghiệm của đa thức F(x)
\(\left(2x-3\right)\left(1^5-x\right)\)
Đa thức có nghiệm <=> \(\left(2x-3\right)\left(1^5-x\right)=0\)
<=> \(\orbr{\begin{cases}2x-3=0\\1^5-x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=3\\1-x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}\)
Vậy nghiệm của đa thức là 3/2 và 1
đa thức trên có nghiệm \(\Leftrightarrow x^2-10x=0\)
\(\Leftrightarrow x.\left(x-10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-0\\x=10\end{cases}}}\)
Vậy \(x\in\left\{0;10\right\}\)là nghiệm của đa thức trên
\(\left(2x+5\right)\left(3-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=3\end{matrix}\right.\)
\(-2x^2-8x+2=0\)
\(< =>-\left(\left(\sqrt{2}x\right)+2.\sqrt{2}x.\frac{4}{\sqrt{2}}+8\right)+8+2=0\)
\(< =>\sqrt{10}^2-\left(\sqrt{2}x+8\right)^2=0\)
\(< =>\left(\sqrt{10}-\sqrt{2}x-8\right)\left(\sqrt{10}+\sqrt{2}x+8\right)=0\)
\(< =>\orbr{\begin{cases}-\sqrt{2}x=8-\sqrt{10}\\\sqrt{2}x=-8-\sqrt{10}\end{cases}< =>\orbr{\begin{cases}x=\frac{\sqrt{10}-8}{\sqrt{2}}\\x=\frac{-\sqrt{10}-8}{\sqrt{2}}\end{cases}}}\)
Đặt P(x)=0
\(\Leftrightarrow x^2-3x-2=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-2\right)=17>0\)
Do đó; Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{17}}{2}\\x_2=\dfrac{3+\sqrt{17}}{2}\end{matrix}\right.\)
\(x^2-2x=0\)
\(\Leftrightarrow x\cdot\left(x-2\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
x*(x-2)
TH1)
x=0
TH2)
x-2=0
x=2
Vậy x=0 hoặc x=2