K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

\(x^2-2x=0\)

\(\Leftrightarrow x\cdot\left(x-2\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

2 tháng 5 2017

x*(x-2)

TH1)

x=0

TH2)

x-2=0

x=2 

Vậy x=0 hoặc x=2

AH
Akai Haruma
Giáo viên
22 tháng 6 2021

Lời giải:

$x^2\geq 0, \forall x\in\mathbb{R}$

$\Rightarrow Q(x)=x^2+\sqrt{3}\geq \sqrt{3}>0$ với mọi $x\in\mathbb{R}$

Do đó đa thức $Q(x)$ vô nghiệm.

17 tháng 4 2021

Cho \(\left(2x-3\right)\left(3x-5\right)=0\)

\(\Rightarrow\hept{\begin{cases}2x-3=0\\3x-5=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x=3\\3x=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\x=\frac{5}{3}\end{cases}}\)

Vậy \(x\in\left\{\frac{3}{2};\frac{5}{3}\right\}\)

\(\left(2x-3\right)\left(3x-5\right)\)

Đa thức có nghiệm : \(\left(2x-3\right)\left(3x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-3=0\\3x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x=3\\3x=5\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{5}{3}\end{cases}}\)

Kết luận : Vậy nghiệm của đa thức là \(\frac{3}{2}\)và \(\frac{5}{3}\)

25 tháng 4 2022

cho f(x) = 1/2x +4 =0

=> 1/2 x = 0-4

=> 1/2x = -4

=> x = -4 : 1/2

=> x=  -8

vậy x=-8 là nghiệm của đa thức F(x)

25 tháng 4 2022

Nghiệm : -8

7 tháng 6 2020

\(\left(2x-3\right)\left(1^5-x\right)\)

Đa thức có nghiệm <=> \(\left(2x-3\right)\left(1^5-x\right)=0\)

                                <=> \(\orbr{\begin{cases}2x-3=0\\1^5-x=0\end{cases}}\)

                               <=> \(\orbr{\begin{cases}2x=3\\1-x=0\end{cases}}\)

                               <=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}\)

Vậy nghiệm của đa thức là 3/2 và 1

2 tháng 5 2019

đa thức trên có nghiệm \(\Leftrightarrow x^2-10x=0\)

                                      \(\Leftrightarrow x.\left(x-10\right)=0\)

                                    \(\Leftrightarrow\orbr{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-0\\x=10\end{cases}}}\)

Vậy \(x\in\left\{0;10\right\}\)là nghiệm của đa thức trên

2 tháng 5 2019

\(x^2-10x=x\cdot\left(x-10\right)\)

\(\Rightarrow\)Các nghiệm của đa thức đó là 0 và 10.

Chúc bạn học tốt :)

8 tháng 5 2022

\(\left(2x+5\right)\left(3-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=3\end{matrix}\right.\)

8 tháng 5 2022

(2x+5).(3-x) = 0

=>\(\left[{}\begin{matrix}2x+5=0\\=>x=\dfrac{-5}{2}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3-x=0\\=>x=3\end{matrix}\right.\)

 

10 tháng 5 2021

\(-2x^2-8x+2=0\)

\(< =>-\left(\left(\sqrt{2}x\right)+2.\sqrt{2}x.\frac{4}{\sqrt{2}}+8\right)+8+2=0\)

\(< =>\sqrt{10}^2-\left(\sqrt{2}x+8\right)^2=0\)

\(< =>\left(\sqrt{10}-\sqrt{2}x-8\right)\left(\sqrt{10}+\sqrt{2}x+8\right)=0\)

\(< =>\orbr{\begin{cases}-\sqrt{2}x=8-\sqrt{10}\\\sqrt{2}x=-8-\sqrt{10}\end{cases}< =>\orbr{\begin{cases}x=\frac{\sqrt{10}-8}{\sqrt{2}}\\x=\frac{-\sqrt{10}-8}{\sqrt{2}}\end{cases}}}\)

Đặt P(x)=0

\(\Leftrightarrow x^2-3x-2=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-2\right)=17>0\)

Do đó; Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{17}}{2}\\x_2=\dfrac{3+\sqrt{17}}{2}\end{matrix}\right.\)