K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

Đa thức trên có nghiệm

\(\Leftrightarrow x^3-x=0\)

\(\Leftrightarrow x\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

Vậy \(x\in\left\{0;1;-1\right\}\)là nghiệm của đa thức

17 tháng 7 2019

thanks bn nha

13 tháng 6 2020

Đặt \(x\left(x^2+1\right)-3\left(x^2+1\right)=0\)

Ta có: \(x\left(x^2+1\right)-3\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+1\right)=0\)

Vì \(x^2\ge0\forall x\)\(\Rightarrow x^2+1\ge1\forall x\)

\(\Rightarrow\)Để \(\left(x-3\right)\left(x^2+1\right)=0\)thì \(x-3=0\)\(\Leftrightarrow x=3\)

Vậy nghiệm của đa thức đã cho là \(x=3\)

Con chỉ biết giải thế này thôi.

\(x\left(x^2+1\right)-3\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+1\right)=0\)

TH1 : \(x-3=0\Leftrightarrow x=3\)

TH2 : \(x^2+1=0\Leftrightarrow x^2=-1\left(voli\right)\)

Vậy nghiệm của đa thức là 3 

29 tháng 4 2015

1) Ta có: 2x2 + 2x + 1 = 0

<=> x2 + (x2 + 2x + 1) = 0

<=> x2 + (x+ 1)2 = 0 <=> x = x+ 1 = 0       (Vì x2 \(\ge\) 0 và (x+ 1)2 \(\ge\) 0 với mọi x)

x = x+ 1 => 0 = 1 Vô lý

Vậy đa thức đã cho ko có nghiệm

2) a) x3-2x2-5x+6  = 0

=> x3 - x2 - x2 + x - 6x + 6 = 0

=> ( x3 - x2) - (x2 - x)  - (6x - 6) = 0 => x2.(x- 1) - x(x - 1) - 6(x - 1) = 0

=> (x - 1).(x2 - x - 6) = 0 => (x -1).(x2 - 3x + 2x - 6) = 0

=> (x- 1).[x(x - 3) + 2.(x - 3)] = 0 => (x - 1).(x + 2).(x - 3) = 0 

=> x- 1= 0 hoặc x + 2 = 0 hoặc x - 3 = 0

=> x = 1 hoặc x = -2 hoặc x = 3

Đa thức đã cho có 3 nghiệm là: 1; -2 ; 3

b) x3 + 3x2 - 6x - 8 = 0

=>  x3 +  x2 + 2x2 + 2x - 8x - 8 = 0

=> x2.(x + 1) + 2x.(x + 1) - 8 (x + 1) = 0

=> (x+ 1). [x2 + 2x - 8] = 0

=> (x+1).[x2 + 4x - 2x - 8] = 0 => (x +1).[x.(x+4) - 2.(x+4)] = 0

=> (x +1). (x -2). (x+4) = 0 

=> x+ 1 hoặc x - 2 = 0 hoặc x+ 4 = 0

=> x = -1 hoặc x = 2 hoặc x = -4

Đa thức đã cho có 3 nghiệm là -1; 2; -4

 

6 tháng 12 2016

x+(-2x)=(-70+(-3)

29 tháng 4 2016
A) P(x): x5+7x4-9x3-2x2-2x.có bậc là 5 Q(x):5x4-2x2+4x2-5x-3.có bậc là 4
6 tháng 5 2016

Bạn giải trình tự ra giúp mk được k

3 tháng 5 2021

a) P(x) =5x3 - 5x + 9 +x

            =5x3 + (-5x + x) + 9

             = 5x3 - 4x + 9

 Sắp xếp: tương tự như trên.
Mk đang bận chút mk làm tiếp.

3 tháng 5 2021

a, P(x) = 5x3 - 4x + 9

Q(x) = x2 + 4x - 130

b, M(x) = 5x3 - 4x + 9 + x2 + 4x - 130 = 5x3+x2-121

nghiệm của đa thức M(x) là: x=2,827335766

27 tháng 6 2024

2\(x^3\) - 8\(x^2\) + 9\(x\) = 0

\(x\)(2\(x^2\)  - 8\(x\) + 9) = 0

\(\left[{}\begin{matrix}x=0\\2x^2-8x+9=0\end{matrix}\right.\)

 2\(x^2\) - 8\(x\) + 9 = 0 

2\(x^2\) - 4\(x\) - 4\(x\) + 8 + 1 = 0

(2\(x^2\) - 4\(x\)) - (4\(x\) - 8) + 1 = 0

2\(x\)(\(x-2\)) - 4(\(x-2\)) + 1 = 0

  2(\(x-2\))(\(x\) - 2) + 1 = 0

   2(\(x-2\))2 + 1 = 0 (vô  lí) vì (\(x\) - 2)2 ≥ 0 \(\forall\)\(x\) ⇒ 2.(\(x-2\))2  +1 ≥ 1 > 0

Vậy 2\(x^3\) - 8\(x^2\) + 9\(x\) = 0 có nhiều nhất 1 nghiệm và đó là \(x\) = 0

 

 

 

20 tháng 4 2015

mk bít có bn nghiệm rồi mk muốn pít cách giải để tìm ra các nghiệm

 

28 tháng 7 2017

a) Để đa thức f(x) có nghiệm là 1 và 3 thì \(1^3-a.1^2-9.1+b=3^3-a.3^2-9.3+b=0\)

=> \(1-a-9+b=27-9a-27+b\)

=> \(-a+9a+b-b=8\Rightarrow8a=8\Rightarrow a=1\)

Từ đó tính được b = 9.

b) Thay kết quả câu a vào f(x) ta được f(x) = \(x^3-x^2-9x+9\)

Đa thức f(x) có nghiệm khi:

\(x^3-x^2-9x+9=x^2\left(x-1\right)-9\left(x-1\right)\)

\(=\left(x^2-9\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-1=0\end{cases}}\)

Từ đó tìm được tập nghiệm của f(x) là {-3;1;3}.