Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
g(x) = 3x2 - 3 - 8g(x)
<=> 9g(x) = 3x2 - 3
<=> g(x) = (3x2 - 3) / 9
<=> g(x) = (x2 -1) /3
<=> g(x) = (x + 1) (x - 1) / 3
=> g(x) = 0 <=> x + 1 = 0 hoặc x - 1 = 0 => x = +-1
Ta có:
f (-1) = (2-a)(-1)2 + 5a(-1) - 7 = 2 - a - 5a - 7 = - 6a - 5
f(2) = (2-a)22 + 5a.2 - 7 = 8 - 4a + 10a - 7 = 6a + 1
f(-1) = f(2) => - 6a - 5 = 6a + 1
<=> 12a = - 6 => a = - 1/2
Ta có:
f(-1)=(2-a)*(-1)2+5a*(-1)-7
=2-a-5a-7
=-5-6a
f(2)=(2-a)*22+5a*2-7
=(2-a)*4+10a-7
=8-4a+10a-7
=6a+1
Mà f(-1)=f(2). Suy ra -5-6a=6a+1
Suy ra 12a=-6
a=-1/2
Vậy a=-1/2
a;\(10-\left(y^2-25\right)^4\)
vì \(\left(y^2-25\right)^4\ge0\)c với mọi \(Y\varepsilon R\)=>\(10-\left(y^2-25\right)^4\le10\)
vậy giá trị lớn nhất của biểu thức \(10-\left(y^2-25\right)^4\) là 1\(10< =>y^2-25=0=>y=5;y=-5\)
b;\(-125-\left(x-4\right)^2-\left(y-5\right)^2\)=-\(-125-\left[\left(x-4\right)^2-\left(y-5\right)^2\right]\le-125\)
=>giá trị lớn nhất của biểu thức \(-125-\left(x-4\right)^2-\left(y-5\right)^2\) là -125
\(< =>\left(x-4\right)^2=0;\left(y-5\right)^2=0=>x=4'y=5\)
Vì \(\left|y-2\right|\ge0\forall y\)
\(\Rightarrow\left|y-2\right|-3\ge-3\forall y\)
Dấu "=" xảy ra <=> |y - 2| = 0 => y = 2
Vậy GTNN của \(\left|y-2\right|-3\) là - 3 tại y = 2
Vì \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2-19\ge-19\forall x\)
Dấu "=" xảy ra <=>\(\left(x+1\right)^2=0\Rightarrow x=-1\)
Vậy ......................
\(h\left(x\right)=x^3+4x-3\left(x^2+4\right)\)
\(\Rightarrow h\left(x\right)=x^3+4x-3x^2-12\)
\(\Rightarrow h\left(x\right)=x^3-3x^2+4x-12\)
\(\Rightarrow h\left(x\right)=x^2\left(x-3\right)+4\left(x-3\right)=\left(x^2+4\right)\left(x-3\right)\)
h(x) có nghiệm <=> h(x)=0 <=> \(\left(x^2+4\right)\left(x-3\right)=0\Leftrightarrow\int^{x^2+4=0}_{x-3=0}\)
Vì \(x^2\ge0\Rightarrow x^2+4\ge0+4>0\) (với mọi x \(\in\) R)=>x2+4 vô nghiệm
=>x-3=0=>x=3
Vậy............................