K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2016

\(h\left(x\right)=x^3+4x-3\left(x^2+4\right)\)

\(\Rightarrow h\left(x\right)=x^3+4x-3x^2-12\)

\(\Rightarrow h\left(x\right)=x^3-3x^2+4x-12\)

\(\Rightarrow h\left(x\right)=x^2\left(x-3\right)+4\left(x-3\right)=\left(x^2+4\right)\left(x-3\right)\)

h(x) có nghiệm <=> h(x)=0 <=> \(\left(x^2+4\right)\left(x-3\right)=0\Leftrightarrow\int^{x^2+4=0}_{x-3=0}\)

\(x^2\ge0\Rightarrow x^2+4\ge0+4>0\) (với mọi x \(\in\) R)=>x2+4 vô nghiệm

=>x-3=0=>x=3

Vậy............................

18 tháng 4 2016

Ta có:

g(x) = 3x2 - 3 - 8g(x)

<=> 9g(x) = 3x2 - 3

<=> g(x) = (3x2 - 3) / 9

<=> g(x) = (x2 -1) /3

<=> g(x) = (x + 1) (x - 1) / 3

=> g(x) = 0 <=> x + 1 = 0 hoặc x - 1 = 0 => x = +-1

18 tháng 4 2016

Ta có:

f (-1) = (2-a)(-1)2 + 5a(-1) - 7 = 2 - a - 5a - 7 = - 6a - 5

f(2) = (2-a)22 + 5a.2 - 7 = 8 - 4a + 10a - 7 = 6a + 1

f(-1) = f(2) => - 6a - 5 = 6a + 1

<=> 12a = - 6 => a = - 1/2

18 tháng 4 2016

Ta có:

f(-1)=(2-a)*(-1)2+5a*(-1)-7

       =2-a-5a-7

       =-5-6a

f(2)=(2-a)*22+5a*2-7

     =(2-a)*4+10a-7

    =8-4a+10a-7

    =6a+1

Mà f(-1)=f(2). Suy ra -5-6a=6a+1

Suy ra 12a=-6

              a=-1/2

Vậy a=-1/2

14 tháng 3 2017

Giá trị nhỏ nhất là -1

Đạt được khi x=-3; 3 và y=3

có bị lộn đề ko bạn

15 tháng 3 2017

sửa (x-3)^2

GTNN=5 khi x=3 và y=1

15 tháng 3 2017

\(\left(x-3\right)^2+\left(y-1\right)^2+5\)

ta có \(\hept{\begin{cases}\left(x-3\right)^2\ge0x\varepsilon r\\\left(y-1\right)^2\ge0y\varepsilon r\end{cases}}\)

=>\(\left(x-3\right)^2+\left(y-1\right)^2+5\ge5\) với mọi x.y \(\varepsilon\) R

=>biểu thức đạt giá trij lớn nhất là 5 tại

\(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-1\right)^2=0\end{cases}=>\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

14 tháng 3 2017

Để biểu thức đạt nhỏ nhất thì (2x-3)4 đạt nhỏ nhất.

Lại có: (2x-3)4=[(2x-3)2]2 >=0

=> giá trị nhỏ nhất của nó là =0

=> giá trị nhỏ nhất là: -2

Đạt được khi x=3/2