Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, P(x) = 5x - 4
=> 5x = 4
=> x = 4/5
b, Q(x) = x2 - 1
=> x2 = 1
=> x = \(\pm\sqrt{1}\)
D, H(x) = (3 - 2x)(x + 1)
=> 3 - 2x = 0 hoặc x + 1 = 0
=> -2x = -3 hoặc x = -1
=> x = 3/2 hoặc x = -1
e, G(x) = x2 + 3
=> x2 = -3 ( vô lý vì x2 \(\ge\)0)
=> Đa thức vô nghiệm
a) P(x) = 5x - 4
Để P(x) có nghiệm => 5x - 4 = 0
=> 5x = 4
=> x = 4/5
Vậy nghiệm của đa thức trên là 4/5
b) Q(x) = x2 - 1
Để Q(x) có nghiệm => x2 - 1 = 0
=> x2 = 1
=> \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy nghiệm của đa thức trên là 1 và -1
d) H(x) = ( 3 - 2x )( x + 1 )
Để H(x) có nghiệm => ( 3 - 2x )( x + 1 ) = 0
=> \(\orbr{\begin{cases}3-2x=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x=3\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=-1\end{cases}}\)
Vậy nghiệm của đa thức trên là 3/2 và -1
c) G(x) = x2 + 3
Ta có : \(x^2\ge0\forall x\)
\(3>0\)
=> \(x^2+3>0\)
=> Vô nghiệm
3) tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2
\(\Rightarrow M\left(x\right)=x^2-mx+2\)
\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)
\(\Leftrightarrow1-m\left(-1\right)=-2\)
\(\Leftrightarrow m\left(-1\right)=3\)
\(\Leftrightarrow m=-3\)
vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)
4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)
\(\Leftrightarrow K\left(2\right)=a+b=3\)
\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)
\(\Leftrightarrow a+\left(-b\right)+c2=5\)
ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
vậy \(a=1;b=2;c=3\)
1. a) Sắp xếp :
f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9
g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9
b) h(x) = f(x) + g(x)
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )
= 3x2- 3x
c) h(x) có nghiệm <=> 3x2 - 3x = 0
<=> 3x( x - 1 ) = 0
<=> 3x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 1
Vậy nghiệm của h(x) là x= 0 hoặc x = 1
2. D(x) = A(x) + B(x) - C(x)
= 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )
= 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2
= ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 )
= 9x3
b) D(x) có nghiệm <=> 9x3 = 0 => x = 0
Vậy nghiệm của D(x) là x = 0
3. M(x) = x2 - mx + 2
x = -1 là nghiệm của M(x)
=> M(-1) = (-1)2 - m(-1) + 2 = 0
=> 1 + m + 2 = 0
=> 3 + m = 0
=> m = -3
Vậy với m = -3 , M(x) có nghiệm x = -1
4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )
K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1
=> a + 0b + c.0.(-1) = 1
=> a + 0 = 1
=> a = 1
K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3
=> 1 + 1b + c.1.0 = 3
=> 1 + b + 0 = 3
=> b + 1 = 3
=> b = 2
K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5
=> 1 + 5(-1) + c(-1)(-2) = 5
=> 1 - 5 + 2c = 5
=> 2c - 4 = 5
=> 2c = 9
=> c = 9/2
Vậy a = 1 ; b = 2 ; c = 9/2
Bài 1:
a) Để tìm nghiệm của đa thức \(\left(x-3\right)\left(4-5x\right)\), ta cho đa thức \(\left(x-3\right)\left(4-5x\right)=0\).
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\5x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{4}{5}\end{matrix}\right.\)
Vậy nghiệm của đa thức \(\left(x-3\right)\left(4-5x\right)\) là \(3\) và \(\dfrac{4}{5}\).
b) Để tìm nghiệm của đa thức \(x^2-2\), ta cho đa thức \(x^2-2=0\).
\(\Leftrightarrow x^2=2\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{2}\\x=\sqrt{2}\end{matrix}\right.\)
Vậy nghiệm của đa thức \(x^2-2\) là \(-\sqrt{2}\) và \(\sqrt{2}\).
c) Để tìm nghiệm của đa thức \(x^2+\sqrt{3}\), ta cho đa thức \(x^2+\sqrt{3}=0\).
\(\Leftrightarrow x^2=-\sqrt{3}\)
Vì \(x^2\ge0\) với mọi \(x\)
nên \(x^2>-\sqrt{3}\)
Vậy đa thức \(x^2+\sqrt{3}\) vô nghiệm.
d) Để tìm nghiệm của đa thức \(x^2+2x\), ta cho đa thức \(x^2+2x=0\).
\(\Leftrightarrow x\times\left(x+2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy nghiệm của đa thức \(x^2+2x\) là \(0\) và \(-2\).
e) Để tìm nghiệm của đa thức \(x^2+2x-3\), ta cho đa thức \(x^2+2x-3=0\).
\(\Leftrightarrow x^2+2x=3\) \(\Leftrightarrow x^2+x+x+1=3+1\) \(\Leftrightarrow x\times\left(x+1\right)+\left(x+1\right)=4\) \(\Leftrightarrow\left(x+1\right)\left(x+1\right)=4\) \(\Leftrightarrow\left(x+1\right)^2=4\) \(\Leftrightarrow\left[{}\begin{matrix}x+1=-2\\x+1=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức \(x^2+2x-3\) là \(-3\) và \(1\).
Bài 2:
a) Ta có: \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\) \(=x-2x^2+2x^2-x+4\) \(=\left(-2x^2+2x^2\right)+\left(x-x\right)+4=4\)
Vì \(f\left(x\right)=4\) với mọi \(x\)
nên \(f\left(x\right)>0\) với mọi \(x\)
Vậy đa thức \(f\left(x\right)\) vô nghiệm.
b) Ta có: \(g\left(x\right)=x\left(x-5\right)-x\left(x+2\right)+7x=x^2-5x-x^2-2x\) \(=\left(x^2-x^2\right)-\left(5x+2x\right)=-7x\)
Để tìm nghiệm của đa thức \(g\left(x\right)\), ta cho đa thức \(g\left(x\right)=0\).
\(\Leftrightarrow-7x=0\Leftrightarrow x=0\)
Vậy nghiệm của đa thức \(g\left(x\right)\) là \(0\).
c) Theo đề bài, ta có: \(h\left(x\right)=x\left(x-1\right)+1\) (Đa thức này đã được thu gọn)
Để tìm nghiệm của đa thức \(h\left(x\right)\), ta cho đa thức \(h\left(x\right)=0\).
\(\Leftrightarrow x\left(x-1\right)+1=0\Leftrightarrow x\left(x-1\right)=-1\)
\(\Rightarrow x\inƯ\left(-1\right)=\left\{-1;1\right\}\)
Ta có bảng sau:
\(x\) | \(-1\) | \(1\) |
\(x-1\) | \(-2\) | \(0\) |
\(x\left(x-1\right)\) | \(2\) (loại) | \(0\) (loại) |
Vậy đa thức \(h\left(x\right)\) vô nghiệm.
b/ Ta có \(G\left(x\right)=3x\left(x-1\right)-x+1\)
=> \(G\left(x\right)=3x\left(x-1\right)-\left(x-1\right)\)
=> \(G\left(x\right)=\left(x-1\right)\left(3x-1\right)\)
Khi G (x) = 0
=> \(\left(x-1\right)\left(3x-1\right)=0\)
=> \(\orbr{\begin{cases}x-1=0\\3x-1=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\3x=1\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}\)
Vậy G (x) có 2 nghiệm là \(\hept{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}\).
c/ Ta có \(H\left(x\right)=x^2-4x+3\)
=> \(H\left(x\right)=x^2-x-3x+3\)
=> \(H\left(x\right)=\left(x^2-x\right)-\left(3x-3\right)\)
=> \(H\left(x\right)=x\left(x-1\right)-3\left(x-1\right)\)
=> \(H\left(x\right)=\left(x-1\right)\left(x-3\right)\)
Khi H (x) = 0
=> \(\left(x-1\right)\left(x-3\right)=0\)
=> \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy H (x) có 2 nghiệm: \(\hept{\begin{cases}x=1\\x=3\end{cases}}\)
a)P(x)=5.x-4=>5x=4=>x=4/5
Vậy nghiệm của đt...
b)Q(x)=x2-1=>x2=1=> x=+-1
Vậy..
c)H(x)=(3-2x)(x+1)
=> có 2 TH: 3-2x=0; x+1=0
TH1: 3-2x=0 => x=3/2
TH2: x+1=0 => x=-1
Vậy...
d)G(x)=x2+3=> x2=3 => x=+- căn 3
Vậy...