K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-4x=0\)

\(\Rightarrow x\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

\(x^2-5x-6=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+1\right)=0\)

22 tháng 7 2017

x2-4x=0

=>x(x-4)=0

=>x-4=0:x

=>x-4=0

=>x=4

20 tháng 3 2022

a) x=6.

b) x=-3/7.

c) x=1/15.

d) x=\(\pm\)2.

e) x=1.

f) Vô nghiệm.

 

26 tháng 4 2021

 

A(x)=4x4−6x2−7x3−5x−6

B(x)=−5x2+7x3+5x+4−4x4

 

a/ - Tính:

 M(x)=A(x)+B(x)

M(x)=4x4+6x2−7x3−5x−6−5x2+7x3+5x+4−4x4

M(x)=x2−2

- Tìm nghiệm: 

M(x)=x2−2=0⇔x2=2⇔x=−√2;x=√2

b/ C(x)+B(x)=A(x)⇒C(x)=A(x)−B(x)

C(x)=4x4−6x2−7x3−5x−6−(−5x2+7x3+5x+4−4x4)

C(x)=4x4−6x2−7x3−5x−6+5x2−7x3−5x−4+4x4

C(x)=8x4−14x3−x2−10x−10

7 tháng 3 2022

cho đa thức : A(x)=4x^4+6x^2-7x^3-5x-6 và B(x)=-5x^2+x^3+5x+4-4x^4

a)Tính M(x)=A(x)+B(x) rồi tính nghiệm của đa thức M(x)

b)tìm đa thức C(x)sao cho C(x)|+B(x)=A(x)

21 tháng 4 2022

a) \(4x+12=0\)

\(4x=-12\\ x=-3\)

Vậy \(x=-3\) là nghiệm của đa thức.

b) \(5x-\dfrac{1}{6}=0\)

\(5x=\dfrac{1}{6}\\ x=\dfrac{1}{30}\)

Vậy \(x=\dfrac{1}{30}\) là nghiệm đa thức.

c) \(-6-2x=0\)

\(2x=-6\\ x=-3\)

Vậy \(x=-3\) là nghiệm của đa thức.

d) \(x^2+4x=0\)

\(x\left(x+4\right)=0\)

TH1: \(x=0\)

TH2: \(x+4=0\) hay \(x=-4\)

Vậy các nghiệm của đa thức là \(x=0,x=-4\).

e) \(x^3-4x=0\)

\(x\left(x^2-4\right)=0\)

TH1: \(x=0\)

TH2: \(x^2-4=0\), suy ra \(x^2=4\), do đó \(x=2\) hoặc \(x=-2\)

Vậy các nghiệm của đa thức là \(x=0,x=2,x=-2\)

f) \(x^5-27x^2=0\)

\(x^2\left(x^3-27\right)=0\)

Th1: \(x^2=0\) hay \(x=0\)

TH2: \(x^3-27=0\), suy ra \(x^3=27\), hay \(x=3\)

Vậy \(x=0,x=3\) là các nghiệm của đa thức.

21 tháng 4 2022

\(\text{a)Đặt 4x+12=0}\)

\(\Rightarrow4x=0-12=-12\)

\(\Rightarrow x=\left(-12\right):4=-3\)

\(\text{Vậy đa thức 4x+12 có nghiệm là x=-3}\)

\(\text{b)Đặt 5x-}\dfrac{1}{6}=0\)

\(\Rightarrow5x=0+\dfrac{1}{6}=\dfrac{1}{6}\)

\(\Rightarrow x=\dfrac{1}{6}:5=\dfrac{1}{30}\)

\(\text{Vậy đa thức 5x-}\dfrac{1}{6}\text{ có nghiệm là }x=\dfrac{1}{30}\)

\(\text{c)Đặt (-6)-2x=0}\)

\(\Rightarrow2x=\left(-6\right)-0=-6\)

\(\Rightarrow2x=\left(-6\right):2=-3\)

\(\text{Vậy đa thức (-6)-2x có nghiệm là x=-3}\)

\(\text{d)Đặt }x^2+4x=0\)

\(\Rightarrow x\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x+4=0\Rightarrow x=0-4=-4\end{matrix}\right.\)

\(\text{Vậy đa thức }x^2+4x\text{ có 2 nghiệm là }x=0;x=-4\)

\(\text{e)Đặt }x^3-4x=0\)

\(\Rightarrow x\left(x^2-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-4=0\Rightarrow x^2=0+4=4\Rightarrow x=\pm2\end{matrix}\right.\)

\(\text{Vậy đa thức }x^3-4x\text{ có 3 nghiệm là }x=0;x=2;x=-2\)

\(\text{f)Đặt }x^5-27x^2=0\)

\(\Rightarrow x^2\left(x^3-27\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2=0\Rightarrow x=0\\x^3-27=0\Rightarrow x^3=0+27=27\Rightarrow x=3\end{matrix}\right.\)

\(\text{Vậy đa thức }x^5-27x^2\text{ có 2 nghiệm là }x=0;x=3\)

a)Đặt A (x) = 0

hay \(3x-6=0\)

        \(3x\)      \(=6\)

          \(x\)      \(=6:3\)

          \(x\)      \(=2\)

Vậy \(x=2\) là nghiệm của A (x)

b) Đặt B (x) = 0

hay \(2x-10=0\)

       \(2x\)        \(=10\)

         \(x\)        \(=10:2\)

         \(x\)        \(=5\)

Vậy \(x=5\) là nghiệm của B (x)

c) Đặt C (x) = 0

hay  \(x^2-1=0\)

        \(x^2\)       \(=1\)

        \(x^2\)      \(=1:1\)

        \(x^2\)      \(=1\)

        \(x\)       \(=\overset{+}{-}1\)

Vậy \(x=1;x=-1\) là nghiệm của C (x)

d) Đặt D (x) = 0

hay \(\left(x-2\right).\left(x+3\right)=0\)

⇒ \(x-2=0\) hoặc \(x+3=0\)

*   \(x-2=0\)              * \(x+3=0\)

    \(x\)       \(=0+2\)           \(x\)       \(=0-3\)

    \(x\)       \(=2\)                 \(x\)        \(=-3\)

Vậy \(x=2\) hoặc \(x=-3\)  là nghiệm của D (x)

e) Đặt E (x) = 0

hay \(x^2-2x=0\)

    ⇔\(\left[{}\begin{matrix}x^2-2x\\\left(x-2\right)x\end{matrix}\right.\)

\(\left(x-2\right)x\)   

 ⇔   \(x.\left(2x-1\right)=0\)

  ⇔  \(\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\)                

\(\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=2\) là nghiệm của E (x)

f) Đặt F (x) = 0

hay \(\left(x^2\right)+2=0\)

         \(x^2\)          \(=0-2\)

        \(x^2\)           \(=-2\)

        \(x\)            \(=\overset{-}{+}-2\)

Do \(\overset{+}{-}-2\) không bằng 0 nên F (x) không có nghiệm

Vậy  đa thức F (x)  không có nghiệm

g) Đặt G (x) = 0

hay  \(x^3-4x=0\)

         ⇔\(\left[{}\begin{matrix}x^3-4x\\\left(x-4\right)x^2\end{matrix}\right.\)

⇒ \(\left(x-4\right)x^2=0\)

⇔ \(x.\left(4x-1\right)=0\)

         ⇔\(\left[{}\begin{matrix}x=0\\4x-1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=\dfrac{1}{4}\) là nghiệm của G (x)

h) Đặt H (x) = 0

hay \(3-2x=0\)

            \(2x\)   \(=3+0\)

            \(2x\)   \(=3\)

              \(x\)   \(=3:2\)

              \(x\)    \(=\dfrac{3}{2}\)

Vậy \(x=\dfrac{3}{2}\) là nghiệm của H (x)

CÂU G) MIK KHÔNG BIẾT CÓ  2 NGHIỆM HAY LÀ 3 NGHIỆM NỮA

 

12 tháng 3 2022

Bài 2 : 

a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)

Dấu ''='' xảy ra khi x = 2 

b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)

Dấu ''='' xảy ra khi x = -1 

12 tháng 3 2022

 Bài 1 : 

a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)

c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

12 tháng 8 2021

Phần nào bạn ko nhìn thấy thì bảo mk nhé

undefinedundefined

12 tháng 8 2021

Ko có phần d nhé

phần e  thêm "=0" vào cuối nhé

a) dễ tự làm

b) A(x) có bậc 6

      hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3

B(x) có bậc 6

hệ số: 2 ; -5 ; 3 ; 4 ; 7

c) bó tay

d) cx bó tay

NV
11 tháng 1

b.

Đặt \(f\left(x\right)=x^2-5x+51=x^2-5x+\dfrac{25}{4}+\dfrac{37}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\)

Do \(\left(x-\dfrac{5}{2}\right)^2\ge0;\forall x\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\ge\dfrac{37}{2}\) ;\(\forall x\)

\(\Rightarrow\) Đa thức \(f\left(x\right)\) không có nghiệm

c.

Đặt \(g\left(x\right)=-x^2-6x-45=-\left(x^2+6x+9\right)-36=-\left(x+3\right)^2-36\)

Do \(-\left(x+3\right)^2\le0;\forall x\Rightarrow-\left(x+3\right)^2-36\le-36\) ;\(\forall x\)

\(\Rightarrow\) Đa thức \(g\left(x\right)\) không có nghiệm

d.

Đặt \(h\left(x\right)=x^2-4x+26=\left(x^2-4x+4\right)+22=\left(x-2\right)^2+22\)

Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2+22\ge22\) ;\(\forall x\)

\(\Rightarrow\) Đa thức \(h\left(x\right)\) không có nghiệm

4.

d. \(x^3-19x^2=0\)

\(\Leftrightarrow x^2\left(x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-19=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=19\end{matrix}\right.\)

Vậy đa thức có 2 nghiệm là \(x=0;x=19\)

a)A(x) = 3x^3 - 4x^4 - 2x^3 + 4x^4 - 5x + 3 

=x^3-5x+3

bậc:3

hệ số tự do:3

hệ số cao nhất :3

B(x) = 5x^3 - 4x^2 - 5x^3 - 4x^2 - 5x - 3

=-8x^2-5x+3

bậc:2

hệ số tự do:3

hệ số cao nhất:3

b)A(x)+B(x)=x^3-8^2+10x+6

câu b mik ko đặt tính theo hàng dọc đc thông cảm nha