Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(0\right)=0^5-2.0^2+7.0^4-9.0^3-\frac{1}{4}.0\)
\(=0-0+0-0-0=0\)
=> x = 0 là nghiệm của P (x) (1)
\(Q\left(x\right)=5.0^4-0^5+4.0^2-2.0^3-\frac{1}{4}\)
\(=0-0+0-0-\frac{1}{4}\)
\(=\frac{1}{4}\)
=> x = 0 không phải là nghiệm của Q (x) (2)
Từ (1) và (2) => x = 0 là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
Thay x=0 vào đa thức P(x) ta được:
\(0^5-2.0^2+7.0^4-9.0^3-\frac{1}{4}.0\)
=\(0-0+0-0-0=0\)
Vậy x=0 là nghiệm của đa thức P(x)
Thay x=0 vào đa thức Q(x) ta được:
\(5.0^4-0^5+4.0^2-2.0^3-\frac{1}{4}\)
=\(\frac{1}{4}\)
Vậy x=0 không phải là nghiệm của đa thức Q(x)
Nhớ tick cho mình nha!
a. P(x)+Q(x)=(3x4 + x3- x2- \(\dfrac{1}{4}\)x)+(3x4- 4x3+x2-\(\dfrac{1}{4}\))=6x4-3x3+\(\dfrac{1}{2}\)
Tương tự làm P(x)-Q(X) nhé !!!
b. Thay x = 0 vào đa thức P(x) ta có :
.....................................................
thay x = 0 vào đa thức Q(x) ta có:
......................................................
=> đpcm
b,x=15/4laf nghiệm của đa thức trên
bai 2
a,x=1/2
b,x thuộc(3/4,-5)
c,x= căn bậc 2 cuả 2
Câu 1: Tìm nghiệm của các đa thức:
1. P(x) = 2x -3
⇒2x-3=0
↔2x=3
↔x=\(\frac{3}{2}\)
2. Q(x) = −12−12x + 5
↔-12-12x+5=0
↔-12x=0+12-5
↔-12x=7
↔x=\(\frac{7}{-12}\)
3. R(x) = 2323x + 1515
↔2323x+1515=0
↔2323x=-1515
↔x=\(\frac{-1515}{2323}\)
4. A(x) = 1313x + 1
↔1313x + 1=0
↔1313x=-1
↔x=\(\frac{-1}{1313}\)
5. B(x) = −34−34x + 1313
↔−34−34x + 1313=0
↔-34x=0+34-1313
↔-34x=-1279
↔x=\(\frac{1279}{34}\)
Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4
Giải :cho x2 - 6x + 8 là f(x)
có:f(2)=22 - 6.2 + 8
=4-12+8
=0⇒x=2 là nghiệm của f(x)
có:f(4)=42 - 6.4 + 8
=16-24+8
=0⇒x=4 là nghiệm của f(x)
Câu 3: Tìm nghiệm của các đa thức sau:
1.⇒ (2x - 4) (x + 1)=0
↔2x-4=0⇒2x=4⇒x=2
x+1=0⇒x=-1
-kết luận:x=2 vàx=-1 là nghiệm của A(x)
2. ⇒(-5x + 2) (x-7)=0
↔-5x + 2=0⇒-5x=-2⇒
x-7=0⇒x=7
-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)
3.⇒ (4x - 1) (2x + 3)=0
⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)
2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)
-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)
4. ⇒ x2- 5x=0
↔x.x-5.x=0
↔x.(x-5)=0
↔x=0
x-5=0⇒x=5
-kết luận:x=0 và x=5 là nghiệm của D(x)
5. ⇒-4x2 + 8x=0
↔-4.x.x+8.x=0
⇒x.(-4x+x)=0
⇒x=0
-4x+x=0⇒-3x=0⇒x=0
-kết luận:x=0 là nghiệm của E(x)
Câu 4: Tính giá trị của:
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
-X=1⇒f(x) =4
-X=0⇒f(x) =7
-X=2⇒f(x) =89
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
-X=-1⇒G(x) =-14
-X=0⇒G(x) =2
-X=1⇒G(x) =20
-X=2⇒G(x) =43
Ta có : 3x^2+5x+2=0 3x^2+2x+3x+2=0 (3x^2+2x)+(3x+2)=0 x(3x+2)+(3x+2)=0 (3x+2).(x+1)=0 =>3x+2=0=>x=-2/3 x+1=0=>x=-1
a, Đặt 3x^2 + 5x + 2 = 0
=>3x^2 + 2x + 3x + 2 =0
=>(3x^2 +2x) + (3x+2)=0
=> x(3x+2) + (3x+2) = 0
( 3x+2).(x+1)=0
<=> 3x+2=0 hoặc x+1=0
<=>3x =-2 hoặc x= -1
<=>x=-2/3 hoặc x= -1
Vậy nghiệm đa thức đã cho là x= -2/3 hoặc x= -1
b, Ta có : Q(1)=0
<=> m(1)^2 + 2m(1) - 3 =0
<=> m + 2m = 3
<=>m(1+2) = 3
<=>m = 1
a: \(\Leftrightarrow11x^3+11x^2-6x^2-6x+10x+10=0\)
\(\Leftrightarrow\left(x+1\right)\left(11x^2-6x+10\right)=0\)
=>x=-1
c: \(\Leftrightarrow x^2\left(\sqrt{5}-1\right)-x\sqrt{5}+1=0\)
\(a=\sqrt{5}-1;b=-\sqrt{5};c=1\)
Vì a+b+c=0 nên pt có hai nghiệm là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{1}{\sqrt{5}-1}=\dfrac{\sqrt{5}+1}{4}\)
d: Ta có: \(x^2\left(1+\sqrt{3}\right)+x-\sqrt{3}=0\)
\(a=1+\sqrt{3};b=1;c=-\sqrt{3}\)
Vì a-b+c=0 nên phương trình có hai nghiệm là:
\(x_1=-1;x_2=\dfrac{\sqrt{3}}{\sqrt{3}+1}\)
Tìm nghiệm của đa thức :
a) \(4x-\frac{2}{3}=0\)
\(4x=0+\frac{2}{3}\)
\(4x=\frac{2}{3}\)
\(x=\frac{2}{3}\div4\)
\(x=\frac{2}{3}\times\frac{1}{4}\)
\(x=\frac{1}{6}\)
\(2x^2+3x+1=0\)Mình ccungx không biết nữa
\(\left(x-1\right)\times\left(x+5\right)\)
\(x-1=0;x+5=0\)
\(x=0+1;x=0-5\)
\(\Leftrightarrow x=1;x=-5\)
a)4x-\(\frac{2}{3}=0\)
\(4x=\frac{2}{3}\)
\(x=\frac{1}{6}\)
b)2x2+3x+1=0
<=>(x+1)(2x+1)=0
<=>x+1=0 hoặc 2x+1=0
<=>x=-1 hoặc x=-1/2
c)(x-1)*(x+5)=0
<=>x-1=0 hoặc x+5=0
<=>x=1 hoặc x=-5
\(Q\left(x\right)=x^2-4x+4=0\)
\(\Leftrightarrow x^2-2.x.2+2^2=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\) ( Áp dụng HĐT \(a^2+2ab+b^2=\left(a+b\right)^2\) )
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)
Đinh Đức HùngÁp dụng HĐT \(\left(a-b\right)^2=a^2-2ab+b^2\)