Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
x4+x3+x+1 = x3. (x+1) + (x+1) = (x3 + 1)(x+1) = (x+1)2.(x2 - x +1) = 0
=> x + 1 = 0 => x = -1
Vì x2 - x + 1 = (x2 - 2.x .1/2 + 1/4) + 3/4 = (x - 1/2)2 + 3/4 >0 + 3/4 = 3/4
Vậy đa thức trên có nghiệm là x = -1
Trả lời câu hỏi của tôi đi. Tí tôi trả lời của bạn chings xác 100% luôn. UY TÍN BẠN NHÉ
a: f(x)=3x^4+2x^3+6x^2-x+2
g(x)=-3x^4-2x^3-5x^2+x-6
b: H(x)=f(x)+g(x)
=3x^4+2x^3+6x^2-x+2-3x^4-2x^3-5x^2+x-6
=x^2-4
f(x)-g(x)
=3x^4+2x^3+6x^2-x+2+3x^4+2x^3+5x^2-x+6
=6x^4+4x^3+11x^2-2x+8
c: H(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
a: A(x)=x^4-x^3-3x^2+2
B(x)=x^4+3x^2+5
b: A(x)+B(x)=2x^4-x^3+7
c: B(x)=x^2(x^2+3)+5>0
=>B(x) ko có nghiệm
`@` `\text {dnv4510}`
`A)`
`P(x)+Q(x)=`\((2x^4+3x^2-3x^2+6)+(x^4+x^3-x^2+2x+1)\)
`= 2x^4+3x^2-3x^2+6+x^4+x^3-x^2+2x+1`
`= (2x^4+x^4)+x^3+(3x^2-3x^2-x^2)+2x+(6+1)`
`= 3x^4+x^3-x^2+2x+7`
`B)`
`P(x)+M(x)=2Q(x)`
`-> M(x)= 2Q(x) - P(x)`
`2Q(x)=2(x^4+x^3-x^2+2x+1)`
`= 2x^4+2x^3-2x^2+4x+2`
`-> 2Q(x)-P(x)=(2x^4+2x^3-2x^2+4x+2)-(2x^4+3x^2-3x^2+6)`
`= 2x^4+2x^3-2x^2+4x+2-2x^4-3x^2+3x^2-6`
`= (2x^4-2x^4)+2x^3+(-2x^2-3x^2+3x^2)+4x+(2-6)`
`= 2x^3-2x^2+4x-4`
Vậy, `M(x)=2x^3-2x^2+4x-4`
`C)`
Thay `x=-4`
`M(-4)=2*(-4)^3-2*(-4)^2+4*(-4)-4`
`= 2*(-64)-2*16-16-4`
`= -128-32-16-4`
`= -180`
`->` `x=-4` không phải là nghiệm của đa thức.
P(x) = 3x2 – 5 + x4 – 3x3 – x6 – 2x2 – x3
= – x6 + x4 + (– 3x3 – x3) + (3x2 – 2x2) – 5
= – x6 + x4 – 4x3 + x2 – 5.
= – 5+ x2 – 4x3 + x4 – x6
Và Q(x) = x3 + 2x5 – x4 + x2 – 2x3 + x –1
= 2x5 – x4 + (x3 – 2x3) + x2 + x –1
= 2x5 – x4 – x3 + x2 + x –1.
= –1+ x + x2 – x3 – x4 + 2x5
P(x)=x^4+x^3+x+1=0
=x^3(x+1)+(x+1)=0
=(x^3+1)(x+1)=0
=> x+1=0 hoặc x^3+1=0
x+1=0=>x=-1
x^3+1=0=>x^3=1;x=1
vậy nghiệm cần tìm: 1;-1
x^4+x^3+x+1=0
sra: x^3*x+x^3+x+1=0
sra: x^3(x+1)+(x+1)=0
sra: (x+1)(x^3+1)=0
sra: x+1=0
hoặc x^3+1=0
sra: x=-1
sra: vậy x=-1 là nghiệm của đa thức P(x)