x2−4x−31

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt f(x)=0

=>\(x^2-4x-31=0\)

=>\(x^2-4x+4-35=0\)

=>\(\left(x-2\right)^2=35\)

=>\(\left[{}\begin{matrix}x-2=\sqrt{35}\\x-2=-\sqrt{35}\end{matrix}\right.\Leftrightarrow x=2\pm\sqrt{35}\)

23 tháng 8 2017

Bài làm

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

7 tháng 11 2016

a/ \(x^3-5x^2+6x+3=\left(x-2\right)\left(x^2-3x\right)+3.\)( Dùng phép chia đa thức)

Để A chia hết cho x-2 thì 3 phải chia hết cho x-2 => x-2 là ước của 3

=> x-2={3-; -1; 1; 3} => x={-1; 1; 3; 5}

b/ Chia F(x) cho x-1

\(f\left(x\right)=\left(x-1\right)\left(x^2-5x+6\right)\)

Giải phương trình bậc 2 \(x^2-5x+6=0\) để tìm nghiệm còn lại

2 tháng 7 2018

\(E=\frac{5}{2x^2+3x+5}=\frac{5}{2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)+\frac{35}{8}}=\frac{5}{2\left(x+\frac{3}{4}\right)^2+\frac{35}{8}}\le\frac{5}{\frac{35}{8}}=\frac{8}{7}\)

Nên GTLN của E là \(\frac{8}{7}\) đạt được khi x=\(-\frac{3}{4}\)

\(F=\frac{-2}{4x-x^2-5}=\frac{2}{x^2-4x+5}=\frac{2}{x^2-2.2x+4+1}=\frac{2}{\left(x-2\right)^2+1}\le\frac{2}{1}=2\)

Nên GTLN của F là 2 đạt được khi \(x=2\)

7 tháng 7 2018

GTLN cua F la 2 khi 

x=2 

chuc ban hoc tot

29 tháng 5 2018

a) Ta có: P(x) = 3y + 6 có nghiệm khi

3y + 6 = 0

3y = -6

y = -2

Vậy đa thức P(y) có nghiệm là y = -2.

b) Q(y) = y4 + 2

Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y

Nên y4 + 2 có giá trị lớn hơn 0 với mọi y

Tức là Q(y) ≠ 0 với mọi y

Vậy Q(y) không có nghiệm.

17 tháng 9 2019

ghi đề hẳn hoi coi

9 tháng 8 2016

Giả sử : \(f\left(x\right)=\left(x^2-2x-3\right).Q\left(x\right)+r=\left(x-3\right)\left(x+1\right).Q\left(x\right)+r\)

với Q(x) là đa thức thương và r là số dư

Vì f(x) chia hết cho x2-2x-3 nên r = 0

Suy ra : \(f\left(x\right)=\left(x-3\right)\left(x+1\right).Q\left(x\right)\Rightarrow\left[\begin{array}{nghiempt}f\left(-1\right)=0\\f\left(3\right)=0\end{array}\right.\)

 \(f\left(-1\right)=0\Leftrightarrow-2a-5b=-9\)

\(f\left(3\right)=0\Leftrightarrow-18a+15b=-21\)

Ta có hệ : \(\begin{cases}-2a-5b=-9\\-18a+15b=-21\end{cases}\)\(\Leftrightarrow\begin{cases}a=2\\b=1\end{cases}\)

Vậy a = 2 , b = 1