Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
\(a,x^2-2=0\Leftrightarrow x^2-\left(\sqrt{2}\right)^2=0\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy \(S=\left\{-\sqrt{2};\sqrt{2}\right\}\)
\(b,x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{0;2\right\}\)
\(c,x^2-2x=0\Leftrightarrow x\left(x-2\right)\) phương trình như câu b,
\(d,x\left(x^2+1\right)\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-1\left(voli\right)\end{matrix}\right.\)( voli là vô lí )
Vậy \(S=\left\{0\right\}\)
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Vậy x = là nghiệm của đa thức P(x) = 2x +
b) Q(3) = 32 – 2.3 – 3 = 9 – 6 – 3 = 0
Q(1) = 12 – 2.1 – 3 = 1 – 2 – 3 = - 4
Q(-1) = (-1)2 – 2.(-1) – 3 = 1 + 2 – 3 = 0
Vậy x = 3 và x = - 1 là nghiệm của đa thức Q(x) = x2 – 2x – 3
8:
a: M(x)=x^4+2x^2+1
N(x)=x^4+2x^2-3x-14
P(x)=M(x)-N(x)=3x+15
P(x)=0
=>3x+15=0
=>x=-5
b: M(x)=x^2(x^2+1)+1>0
=>M(x) vô nghiệm
a. Ta có: 2x + 10 = 0 ⇔ 2x = -10 ⇔ x = -10 : 2 ⇔ x = -5
Vậy x = -5 là nghiệm của đa thức 2x + 10
b. Ta có: 3x - 1/2 = 0 ⇔ 3x = 1/2 ⇔ x = 1/2 : 3 = 1/6
Vậy x = 1/6 là nghiệm của đa thức 3x - 1/2
c. Ta có: x2 – x = 0 ⇔ x(x – 1) = 0 ⇔ x = 0 hoặc x – 1 = 0
⇔ x = 0 hoặc x = 1
Vậy x = 0 và x = 1 là các nghiệm của đa thức x2 – x
a. Ta có: 2x + 10 = 0 ⇔ 2x = -10
⇔ x = -10 : 2
⇔ x = -5 V
ậy x = -5 là nghiệm của đa thức 2x + 10
b. Ta có: 3x - 1/2 = 0 ⇔ 3x = 1/2 ⇔ x = 1/2 : 3 = 1/6
Vậy x = 1/6 là nghiệm của đa thức 3x - 1/2
c.Ta có: x2 – x = 0 ⇔ x(x – 1) = 0 ⇔ x = 0 hoặc x – 1 = 0 ⇔ x = 0 hoặc x = 1
Vậy x = 0 và x = 1 là các nghiệm của đa thức x2 – x
1: P(x)=M(x)+N(x)
=-2x^3+x^2+4x-3+2x^3+x^2-4x-5
=2x^2-8
2: P(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
3: Q(x)=M(x)-N(x)
=-2x^3+x^2+4x-3-2x^3-x^2+4x+5
=-4x^3+8x+2