Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,5x+9x+21-35=0\Rightarrow14x-14=0\)
\(\Rightarrow x=1\)
\(b,8x^2+8x+x^2+7x+8-9=0\)
\(\Rightarrow9x^2+15x-1=0\)
\(\Rightarrow x\left(9x+14\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\9x+14=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-14}{9}\end{cases}}}\)
Lời giải:
a)
$5x+3(3x+7)-35=0$
$\Leftrightarrow 14x-14=0$
$\Rightarrow 14x=14\Rightarrow x=1$
Vậy nghiệm của đa thức là $1$
b)
$x^2+8x-(x^2+7x+8)-9=0$
$\Leftrightarrow x^2+8x-x^2-7x-8-9=0$
$\Leftrightarrow x-17=0\Rightarrow x=17$
Vậy...
1, \(\left(x-4\right)^2-\left(2x+1\right)^2=\left(x-4-2x-1\right)\left(x-4+2x+1\right)=-3\left(x+5\right)\left(x-1\right).\)
\(\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}}\)(mấy cái này áp dụng hàng đẳng thức lớp 8 mới hok)
2,\(x^3+x^2-4x-4=\left(x-2\right)\left(x^2+3x+2\right)=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)
\(\orbr{\begin{cases}x=\mp2\\\end{cases}}x=-1\)
tương tụ lm tiếp nhe buồn ngủ quá rồi !
Căng, sự thật là nó rất căng
Nhg dù sao thì.....
1) \(A\left(x\right)=\left(x-4\right)^2-\left(2x+1\right)^2\)
Xét \(A\left(x\right)=0\)
\(\Rightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Rightarrow x^2-8x+16-4x^2-4x-1=0\)
\(\Rightarrow-3x^2-12x+15=0\)
\(\Rightarrow-3x^2+3x-15x+15=0\)
\(\Rightarrow-3x\left(x-1\right)-15\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(-3x-15\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-3x-15=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
2)(Sửa đề nha, sai cmnr) \(B\left(x\right)=x^3+x^2-4x-4\)
Xét \(B\left(x\right)=0\)
\(\Rightarrow x^3+x^2-4x-4=0\)
\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=-1\end{matrix}\right.\)
Đó là những j mình biết
a, Đặt \(A\left(x\right)=12x-8=0\)
\(\Leftrightarrow12x=8\Leftrightarrow x=\frac{2}{3}\)
b, Ta có : \(B\left(x\right)=9x^2+8x-7x^2-3x-18-5x\)
Đặt \(2x^2-16x-18=0\)
\(\Leftrightarrow2\left(x^2-8x-9\right)=0\Leftrightarrow2\left(x-9\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=9;x=-1\)
a) \(A\left(x\right)=0\Leftrightarrow12x-8=0\Rightarrow x=\frac{2}{3}\)
b) \(B\left(x\right)=0\Leftrightarrow2x^2-18=0\)
\(\Leftrightarrow x^2=9\Rightarrow x=\pm3\)
ta có: H(x) = 5x^3 + 2 + 8x^2 - 8x^3 - 5x^2 - 6 - 3x^2
H(x) = - ( 8x^3 - 5x^3) + ( 8x^2 - 5x^2 - 3x^2 ) - ( 6-2)
H(x) = - 3 x^3 - 4
Cho H(x) = 0
=> - 3 x^3 - 4 = 0
-3x^3 = 4
x ^3 = -4/3
H(x) = 5x3 +2+8x2-8x3-5x2-6-3x2
H(x) = ( 5x3 - 8x3 ) + ( 8x2 - 5x2 - 3x2 ) + ( 2 - 6 )
H(x) = -3x3 - 4
Để H(x) có nghiệm thì -3x3 - 4 = 0
\(\Rightarrow\)x3 = \(\frac{4}{-3}\)\(\Rightarrow\)x = \(\sqrt[3]{\frac{4}{-3}}\)
Bài 1: (0,5 điểm) Cho đa thức Ax x 2x 4 4 2 . Chứng tỏ rằng Ax 0 với mọi x R .
Bài 2: (3 điểm) Cho tam giác ABC vuông tại A có AB = 5cm, BC = 10cm. a) Tính độ dài AC. b) Vẽ đường phân giác BD của ΔABC và gọi E là hình chiếu của D trên BC. Chứng minh ΔABD = ΔEBD và AE BD. c) Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh: ΔABC = ΔAFC. d) Qua A vẽ đường thẳng song song với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng.
C(x)= 2x-3=0 hoac 5x+7=0
2x=0+3 5x=0-7
2x=3 5x=-7
x=3:2 x=-7:5
x=1.5 x=-1.4