K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 10 2023

Lời giải:
a. $x^3-4x^2+x+6=(x^3-2x^2)-(2x^2-4x)-(3x-6)$

$=x^2(x-2)-2x(x-2)-3(x-2)=(x-2)(x^2-2x-3)$
$=(x-2)[(x^2+x)-(3x+3)]=(x-2)[x(x+1)-3(x+1)]$

$=(x-2)(x+1)(x-3)$

-------------------

b.

$x^3+7x^2+14x+8=(x^3+x^2)+(6x^2+6x)+(8x+8)$

$=x^2(x+1)+6x(x+1)+8(x+1)=(x+1)(x^2+6x+8)$

$=(x+1)[(x^2+2x)+(4x+8)]=(x+1)[x(x+2)+4(x+2)]$

$=(x+1)(x+2)(x+4)$

10 tháng 10 2023

 Câu a bạn xem lại đề bài nhé. Đa thức đề cho thậm chí còn không có nghiệm hữu tỉ luôn cơ.

 b) Lập sơ đồ Horner:

  1 7 14 8
\(x=-1\) 1 6 8 0

\(\Rightarrow x^3+7x^2+14x+8=\left(x+1\right)\left(x^2+6x+8\right)\)

 Ta thấy đa thức \(g\left(x\right)=x^2+6x+8\), dự đoán được 1 nghiệm \(x=-2\). Ta lại lập sơ đồ Horner:

  1 6 8
\(x=-2\) 1 4 0

\(\Rightarrow g\left(x\right)=\left(x+2\right)\left(x+4\right)\)

Vậy đa thức đã cho có thể được phân tích thành \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

 

 

 

 

 

11 tháng 4 2023

Phân tích đa thức thành nhân tử thôi bạn :

Ta có :

\(h\left(x\right)=x^2+5x+6\)

\(h\left(x\right)=x\left(x+2\right)+3\left(x+2\right)\)

\(h\left(x\right)=\left(x+2\right)\left(x+3\right)\)

\(\Rightarrow N_oh\left(x\right)=-2;-3\)

\(g\left(x\right)=2x^2+7x-9\)

\(g\left(x\right)=2x^2+9x-2x-9\)

\(g\left(x\right)=2x\left(x-1\right)+9\left(x-1\right)\)

 

\(g\left(x\right)=\left(x-1\right)\left(2x+9\right)\)

\(\Rightarrow N_og\left(x\right)=1;-4,5\)

11 tháng 4 2023

ko biet

 

20 tháng 8 2016

\(x^3+4x^2+x-6\)

\(=\left(x^3-x^2\right)+\left(5x^2-5x\right)+\left(6x-6\right)\)

\(=x^2\left(x-1\right)+5x\left(x-1\right)+6\left(x-1\right)\)

\(=\left(x-1\right).\left(x^2+5x+6\right)\)

\(=\left(x-1\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]\)

\(=\left(x-1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(x+3\right)\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+2=0\\x+3=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-2\\x=-3\end{array}\right.\)

15 tháng 3 2017

thiếu r bạn mà thiếu cái này trầm trọng đếy

15 tháng 9 2021

\(x\left(x-5\right)-x\left(x+3\right)+7x=0\)

\(\Leftrightarrow x^2-5x-x^2-3x+7x=0\)

\(\Leftrightarrow x=0\)

19 tháng 12 2021

\(M⋮N\\ \Rightarrow3x^3+4x^2-7x+5⋮x-3\\ \Rightarrow3x^3-9x^2+13x^2-39x+32x-96+101⋮x-3\\ \Rightarrow3x^2\left(x-3\right)+13x\left(x-3\right)+32\left(x-3\right)+101⋮x-3\\ \Rightarrow x-3\inƯ\left(101\right)=\left\{-101;-1;1;101\right\}\\ \Rightarrow x\in\left\{-98;2;4;104\right\}\)

19 tháng 12 2021

\(x\in\left\{-98;2;4;104\right\}\)

12 tháng 12 2016

sr mk nhầm đề

12 tháng 12 2016

Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy 
hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y 
tương tự: 
+) 2yz ≤ y² + z² 
+) 2xz ≤ x² + z² 

cộng 3 vế của 3 bđt trên 
--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²) 
--> xy + yz + xz ≤ x² + y² + z² 
--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz 
--> 3(xy + yz + xz) ≤ (x + y + z)² 
--> 3(xy + yz + xz) ≤ 3² 
--> xy + yz + xz ≤ 3 

Vậy MaxP = 3 ; Dấu " = " xảy ra <=> x = y = z = 1 

:D

1 tháng 11 2015

a) x3 - 7x - 6 = x3 + x2 - x2 - x - 6x - 6

= x2(x + 1) - x(x + 1) - 6(x + 1)

= (x + 1)(x2 - x - 6)

= (x + 1)(x2 + 2x - 3x - 6)

= (x + 1)[x(x + 2) - 3(x + 2)]

= (x + 1)(x + 2)(x - 3)