Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x3 - 4x + 5x2 - 2x3 + 8 - 5x2 - x3
= 3x3 - 2x3 - x3 + 5x2 - 5x2 - 4x + 8
= -4x + 8
ta có: -4x + 8 = 0
vì \(-4x\le0\) với mọi x
=> \(-4x+8\le-8< 0\)
=> đa thức trên ko có nghiệm
t i c k nhé
H(x) = \(\left(3x^3-2x^3-x^3\right)+\left(5x^2-5x^2\right)-4x+8\)
= \(8-4x\)
Giả sử H(x) = 0
=> 8 - 4x = 0
=> 4.(2 - x) = 0
=> 2 - x = 0
=> x = 2
\(H\left(x\right)=3x^3-4x+5x^2-2x^3+8-5x^2-x\)
\(H\left(x\right)=\left(3x^3-2x^3-x^3\right)+\left(5x^2-5x^2\right)-4x+8\)
\(H\left(x\right)=6-4x\)
Xét H(x)=0
\(\Rightarrow8-4x=0\)
\(\Rightarrow4x=8\)
\(\Rightarrow x=2\)
Vậy nghiệm của H(x) là 2
Bài làm:
Ta có: \(A\left(x\right)=x^3+3x^2-4x=x\left(x-1\right)\left(x+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\\x+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\\x=-4\end{cases}}\)là nghiệm của A(x)
Vậy x = 0 là nghiêm của A(x)
Mà tại x = 0 thì giá trị của B(x) là:
\(B\left(0\right)=-2.0^3+3.0^2+4.0+1=1\)
=> x = 0 không là nghiệm của B(x)
1,ta có:h(x) = ( x - 3 ).( 16 - 4x )=0
*)x-3=0
=>x=3
*)16-4x=0
=>4x=16
=>x=4
2,ta có:4x^2 - 6x=0
<=>2x(2x-3)=0
*)2x=0
=>x=0
*)2x-3=0
=>2x=3
=>x=\(\frac{3}{2}\)
3,ta có:x^2 + 7x - 8=0
denta:72-(-4(1.8))=81
x1:(-7+9):2=1
x2:(-7-81):2=-8
1: P(x)=M(x)+N(x)
=-2x^3+x^2+4x-3+2x^3+x^2-4x-5
=2x^2-8
2: P(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
3: Q(x)=M(x)-N(x)
=-2x^3+x^2+4x-3-2x^3-x^2+4x+5
=-4x^3+8x+2
Xét \(x^2-4x+3=0\)
\(\Rightarrow x^2-x-3x+3=0\)
\(\Rightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy x = 3 và x = 1 là nghiệm của đa thức x2 - 4x + 3
_Chúc bạn học tốt_
\(x^2-4x+3=0\)
\(x^2-3x-x+3=0\)
\(\left(x^2-3x\right)-\left(x+3\right)=0\)
\(\left(x^2-3x\right)-\left(x-3\right)=0\)
\(x\left(x-3\right)\left(x-3\right)=0\)
\(\left(x-3\right)\left(x-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-3=0\\x-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy ....