Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do đa thức có nghiệm nên ta gọi k là một ngiệm của đa thức đó
Do P(x) là đa thức bậc ba nên \(P\left(x\right)=\left(x-k\right)\left(x^2+mx+n\right)\)
\(=x^3+mx^2+xn-kx^2-kmx-kn\)
\(=x^3+\left(m-k\right)x^2+\left(n-km\right)x-kn\)
Đồng nhất hệ số, ta được: \(\hept{\begin{cases}m-k=a\\n-km=b\\-kn=c\end{cases}}\)
Thay \(\hept{\begin{cases}m-k=a\\n-km=b\\-kn=c\end{cases}}\)vào hệ thức \(a+2b+4c=-\frac{1}{2}\),ta được:
\(\left(m-k\right)+2\left(n-km\right)-4kn=-\frac{1}{2}\)
\(\Leftrightarrow m-k+2n-2km-4kn=-\frac{1}{2}\)
\(\Leftrightarrow k\left(-1-2m-4n\right)+\left(m+2n\right)=-\frac{1}{2}\)
\(\Leftrightarrow2k\left(-1-2m-4n\right)+2\left(m+2n\right)=-1\)
\(\Leftrightarrow2k\left(-1-2m-4n\right)=\left(-1-2m-4n\right)\)
\(\Rightarrow2k=1\Rightarrow k=\frac{1}{2}\)
Vậy 1 nghiệm của đa thức là \(\frac{1}{2}\)
Lời giải:
a) $(a+b-c)x^2-(c-a-b)x=(a+b-c)x^2+(a+b-c)x$
$=(a+b-c)x(x+1)$
b) $2x.x-1-1-x=2x^2-x-2$: biểu thức này không phân tích được thành nhân tử.
c) $9x.x-y-10y-x^2=9x^2-11y-x^2=8x^2-11y$ không phân tích được thành nhân tử
d) $x-1^2-2-x^3=x-3-x^3$ không phân tích được thành nhân tử.
-Đặt \(x^3-2x-4=0\)
\(\Leftrightarrow x^3-2x^2+2x^2-4x+2x-4=0\)
\(\Leftrightarrow x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow x-2=0\) hay \(x^2+2x+2=0\)
\(\Leftrightarrow x=2\) hay \(x^2+2x+1+2=0\)
\(\Leftrightarrow x=2\) hay \(\left(x+1\right)^2+1=0\) (vô nghiệm vì \(\left(x+1\right)^2+1\ge1\forall x\))
-Vậy nghiệm của đa thức \(x^3-2x-4\) là \(x=2\)
\(x^2+4x+8=0\)
\(\text{Δ}=4^2-4\cdot1\cdot8=-16< 0\)
Do đó: Phương trình vô nghiệm
Đa thức \(f\left(x\right)=x^2-x+6\) có nghiệm \(x=a\) khi \(f\left(a\right)=a^2-a+6=0\)
\(\Leftrightarrow a^2-3a+2a-6=0\Leftrightarrow a\left(a-3\right)+2\left(a-3\right)=0\)\(\Leftrightarrow\left(a-3\right)\left(a+2\right)=0\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-2\end{matrix}\right.\)
Vậy đa thức đã cho có 2 nghiệm là 3 và -2
Đặt f(x)=0
=>\(x^2-4x-31=0\)
=>\(x^2-4x+4-35=0\)
=>\(\left(x-2\right)^2=35\)
=>\(\left[{}\begin{matrix}x-2=\sqrt{35}\\x-2=-\sqrt{35}\end{matrix}\right.\Leftrightarrow x=2\pm\sqrt{35}\)
-Ta có: \(2x.x=0\)
\(\Rightarrow2x^2=0\)
\(\Rightarrow x^2=0\)
\(\Rightarrow x=0\)
-Vậy nghiệm của đa thức là \(x=0\)