Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(M\left(x\right)=-2x^4-3x^2-7x-2\)
\(N\left(x\right)=2x^4+3x^2+4x-5\)
\(P\left(x\right)=M\left(x\right)+N\left(x\right)=-3x-7\)
Đặt P(x)=0
=>-3x-7=0
hay x=-7/3
b: Q(x)=N(x)-M(x)
\(=2x^4+3x^2+4x+5+2x^4+3x^2+7x+2\)
\(=4x^4+6x^2+11x+7\)
\(a,A\left(x\right)=P\left(x\right)+Q\left(x\right)=2x^2+3x-5+2x^2-7x+5\\ =\left(2x^2+2x^2\right)+\left(3x-7x\right)+\left(-5+5\right)\\ =4x^2-4x\\ B\left(x\right)=P\left(x\right)-Q\left(x\right)=2x^2+3x-5-\left(2x^2-7x+5\right)\\ =2x^2+3x-5-2x^2+7x-5\\ =\left(2x^2-2x^2\right)+\left(3x+7x\right)+\left(-5-5\right)\\ =4x-10\)
b, \(A\left(x\right)=0\\ \Rightarrow4x^2-4x=0\\\Leftrightarrow 4x\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}4x=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy nghiệm của A(x) là 0 và 1
\(B\left(x\right)=0\\ 4x-10=0\\ \Leftrightarrow4x=10\\ \Leftrightarrow x=\dfrac{5}{2}\)
Vậy nghiệm của B(x) là \(\dfrac{5}{2}\)
a, \(P+\left(5x^2+9xy\right)=6x^2+9xy-x\)
\(\Rightarrow P=x^2-x\)
Gỉa sử : x = 1 là nghiệm của đa thức
Thay x = 1 vào P ta được : \(1-1=0\)*đúng*
Vậy x = 1 là nghiệm của đa thức trên
b, Với \(x\ge\frac{1}{7}\)đa thức có dạng : \(A=2x^2+7x-1-5+x-2x^2=8x-6\)(1)
Với \(x< \frac{1}{7}\)đa thức có dạng : \(A=2x^2-7x+1-5+x-2x^2=-6x-4\)(2)
TH1 : Với đa thức (1) ta có : \(8x-6=2\Leftrightarrow x=1\)
TH2 : Với đa thức (2) ta có : \(-6x-4=2\Leftrightarrow x=-1\)
Ta có:
2x^2+7x-9=0
<=>2x^2-2x+9x-9=0
<=>2x(x-1)+9(x-1)=0
<=>(x-1)(2x+9)=0
<=>x-1=0 hoặc 2x+9=0
+)x-1=0<=>x=1
+)2x+9=0<=>2x=-9<=>x=-9/2
Học tốt
Đặt \(H\left(x\right)=0\)
\(\Rightarrow2x^2-7x+6=0\)
\(\Leftrightarrow2x^2-4x-3x+6=0\)
\(\Leftrightarrow2x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)
Vậy nghiệm của đa thức \(H\left(x\right)\) là \(x=\dfrac{3}{2};x=2\)
Ta có:
\(4x^2+\dfrac{2}{5}x\)
\(=x\left(4x+\dfrac{2}{5}\right)\)
Do đó để đa thức \(4x^2+\dfrac{2}{5}x\) có nghiệm thì \(x\left(4x+\dfrac{2}{5}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\4x+\dfrac{2}{5}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\4x=-\dfrac{2}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{10}\end{matrix}\right.\)
Vậy nghiệm của đa thức là \(x\in\left\{0;-\dfrac{1}{10}\right\}\)
a, f(x)= x - 2x^2 + 2x^2 - x + 4 = 4
b, g(x) = x^2 - 5x - x^2 - 2x + 7x = 0
2x^2 có nghiệm là 2
7x có nghiệm là 1
5 có nghiệm là 0
Vậy nghiệm của đa thức trên là 2
để đa thức có nghiệm
=> 2x^2 - 7x + 5 = 0