Tìm nghiệm của các đa thức sau:

a) 3x – 6 + x(x – 2)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2021

a) 3x – 6 + x(x – 2) = 0

=> 3x - 6 + x2 - 2x = 0

=> ( 3x - 2x ) - 6 + x2 = 0

=> x - 6 + x2 = 0

=> x2 + x = 6

=> x( x + 1 ) = 2 . 3

=> x = 2

7 tháng 7 2021

b) 2x(x – 3) – x(x – 6) – 3x = 0

=> 2x2 - 6x - x2 + 6x - 3x = 0

=> ( 2x2 - x2 ) + ( 6x - 6x ) - 3x = 0

=> x2 - 3x = 0

=> x( x - 3 ) = 0

\(\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x - 3 = 0}\end{cases}\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x = 3}\end{cases}}}\)

26 tháng 8 2021

A= 3x3 - (3x -2)x2  - 2x(x+1)

A= 3x3 - 3x3 + 2x2 - 2x2 -2x

A= -2x

Thay x =-20 vào A ta được:

A = -2.(-20) = 40

Vậy A= 40 khi x = -20 

b) C= x(2x+1) - x2(x+2) + x3 -x + 3

C= 2x2 + x - x3 - 2x2 + x3 -x +3

C= (2x2 - 2x2) + (x-x) - (x3 -x3) +3 

C = 3

Vậy C= 3

Bài làm

a) Ta có:

\(P\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x\)

\(P\left(x\right)=x^5-2x^2+7x^4-9x^3-\frac{1}{4}x\)

\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

\(Q\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)

\(Q\left(x\right)=5x^4-x^5-2x^3+4x^2-\frac{1}{4}\)

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

b) \(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)

Vậy \(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)

Vậy \(P\left(x\right)-Q\left(x\right)=2x^5-2x^4-7x^3-6x^2-\frac{1}{4}x-\frac{1}{4}\)

c) Ta có: 

\(P\left(1\right)=1^5+7.1^4-9.1^3-2.1^2-\frac{1}{4}.1\)

\(P\left(1\right)=-\frac{13}{4}\)

Vậy giá trị của biểu thức P = -13/4 khi x = 1

\(Q\left(0\right)=-0^5+5.0^4-2.0^3+4.0^2-\frac{1}{4}\)

\(Q\left(0\right)=-\frac{1}{4}\)

Vậy \(Q\left(0\right)=-\frac{1}{4}\)

14 tháng 5 2021

Cảm ơn bạn nha!

26 tháng 8 2021

Trả lời:

a, \(\left(3x+y-z\right)-\left(4x-2y+6z\right)=3x+y-z-4x+2y-6z=-x+3y-7z\)

b, \(K=2x\left(-3x+5\right)+3x\left(2x-12\right)+26x=-6x^2+10x+6x^2-36x+26x=0\)

d, \(A=3x^2\left(x-1\right)-\left(3x^2+x\right)=3x^3-3x^2-3x^2-x=3x^3-6x^2+x\)

e, \(B=y\left(2y^2+1\right)-y^2\left(2+2y-y^2\right)=2y^3+y-2y^2-2y^3+y^4=y^4-2y^2+y\)

20 tháng 2 2022

Answer:

Ta có `f(x)=g(x)`

`<=>-3x^2+2x+1=-3x^2-2+x`

`<=>-3x^2+3x^2+2x-x=-2-1`

`<=>x=-3`

Vậy khi `x=-3<=>f(x)=g(x)`

19 tháng 2 2022

Ta có f(x) = g(x) 

\(-3x^2+2x+1=-3x^2+x-2\Leftrightarrow x=-3\)

18 tháng 6 2021

a) A + x2 - 4xy2 + 2xz - 3y2 = 0

=> A =  -x2 + 4xy2 - 2xz + 3y2

b) B + 5x2 - 2xy = 6x2 + 9xy - y2

=> B = 6x2 + 9xy - y2 - 5x2 + 2xy= x2 + 11xy - y2

c) 3xy - 4y2 - A = x2 - 7xy + 8y2

=> A = 3xy - 4y2 - x2 + 7xy - 8y2 = -12y2 + 10xy - x2

18 tháng 6 2021

Trả lời:

a, A + ( x2 - 4xy2 + 2xz - 3y2 ) = 0 

=> A = - ( x2 - 4xy2 + 2xz - 3y2 ) = - x2 + 4xy2 - 2xz + 3y2

b, B + ( 5x2 - 2xy ) = 6x2 + 9xy - y2 

=> B = 6x2 + 9xy - y2 - ( 5x2 - 2xy ) = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2

c, ( 3xy - 4y2 ) - A = x2 - 7xy + 8y2 

=> A = 3xy - 4y2 - ( x2 - 7xy + 8y2 ) = 3xy - 4y2 - x2 + 7xy - 8y2 = 10xy - 12y2 - x2

d, B + ( 4x2y + 5y2 - 3xz + z2 ) = x2 + 11xy - y2 + 4x2y + 5y2 - 3xz + z2 = x2 + 11xy + 4y2 + 4x2y - 3xz + z2 

2 tháng 9 2021

(2x - 1)= (2x - 1)8

=> (2x - 1)8 - (2x - 1)6 = 0

=> (2x - 1)6 . [(2x - 1)2 - 1] = 0

\(\Rightarrow\orbr{\begin{cases}\left(2x-1\right)^6=0\\\left(2x-1\right)^2=1\end{cases}\Rightarrow\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^2=1\end{cases}}}\)

• Nếu 2x - 1 = 0 \(\Rightarrow x=\frac{1}{2}\)

• Nếu (2x - 1)2 = 1 \(\Rightarrow\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}2x=2\\2x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}x=1\\x=0\end{cases}}\)

Vậy, \(x\in\left\{0;\frac{1}{2};1\right\}\)

2 tháng 9 2021

\(1=\left(2x-1\right)^2\)

\(1=4x^2-4x+1\)

\(4x\left(x-1\right)=0\)

\(\orbr{\begin{cases}x-1=0\\4x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)

học tốt nha

AH
Akai Haruma
Giáo viên
12 tháng 4 2022

Lời giải:

a. $3x-5y+1=3.\frac{1}{3}-5.\frac{-1}{5}+1=1+1+1=3$

b.

Với $x=1$ thì $3x^2-2x-5=3.1^2-2.1-5=-4$

Với $x=-1$ thì $3x^2-2x-5=3(-1)^2-2.(-1)-5=0$

Với $x=\frac{5}{3}$ thì $3x^2-2x-5=3(\frac{5}{3})^2-2.\frac{5}{3}-5=0$

c.

$x-2y^2+z^3=4-2.(-1)^2+(-1)^3=1$

d.

$xy-x^2-xy^3=(-1)(-1)-(-1)^2-(-1)(-1)^3=-1$

5 tháng 8 2021

chứng minh hộ mình P(x) + Q(x) và P(x) - Q(x) ạ,mình quên ghi ở trên