K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2021

a) 3x – 6 + x(x – 2) = 0

=> 3x - 6 + x2 - 2x = 0

=> ( 3x - 2x ) - 6 + x2 = 0

=> x - 6 + x2 = 0

=> x2 + x = 6

=> x( x + 1 ) = 2 . 3

=> x = 2

7 tháng 7 2021

b) 2x(x – 3) – x(x – 6) – 3x = 0

=> 2x2 - 6x - x2 + 6x - 3x = 0

=> ( 2x2 - x2 ) + ( 6x - 6x ) - 3x = 0

=> x2 - 3x = 0

=> x( x - 3 ) = 0

\(\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x - 3 = 0}\end{cases}\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x = 3}\end{cases}}}\)

`@` `\text {Ans}`

`\downarrow`

Gửi c!

loading...

loading...

loading...

27 tháng 6 2023

Bài 1: 

a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)

\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)

\(=10x^2+10x^2\)

\(=20x^2\)

b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)

\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)

\(=-4x^4+9x^3+4x^2-44x\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) 2x(x+3) – 3x2(x+2) + x(3x2 + 4x – 6)

= (2x . x + 2x . 3) – (3x2 . x + 3x2 . 2) + (x . 3x2 + x . 4x – x . 6)

= 2x2 + 6x – (3x3 + 6x2) + (3x3 + 4x2 - 6x)

= 2x2 + 6x – 3x3 – 6x2 + 3x3 + 4x2 - 6x

= (– 3x3 + 3x3 ) + (2x2  - 6x2 + 4x2 ) + (6x – 6x)

= 0 + 0 + 0

= 0

b) 3x(2x2 – x) – 2x2(3x+1) + 5(x2 – 1)

= [3x . 2x2 + 3x . (-x)] – (2x2 . 3x + 2x2 . 1) + [5x2 + 5 . (-1)]

= 6x3 – 3x2 – (6x3 +2x2) + 5x2 – 5

= 6x3 – 3x2 – 6x3 - 2x2 + 5x2 – 5

= (6x3 – 6x3 ) + (-3x2 – 2x2 + 5x2) – 5

= 0 + 0 – 5

= - 5

12 tháng 8 2021

Phần nào bạn ko nhìn thấy thì bảo mk nhé

undefinedundefined

12 tháng 8 2021

Ko có phần d nhé

phần e  thêm "=0" vào cuối nhé

2 tháng 3 2023

a) `3x+5 =0`

`3x=-5`

`x=-5/3`

`b) -4x+8=0`

`-4x =-8`

`x=2`

`c) 3x -6=0`

`3x=6`

`x=2`

`d)x^2 +x =0`

`x(x+1) =0`

`=>[(x=0),(x=-1):}`

`e) x^2 -4 =0`

`x^2 =4`

`=> x = +-2`

`f) x^3 -27 =0`

`x^3 =27`

`=> x=3`

`g) 3x^2 +4 =0`

`3x^2 =-4`

`x^2 =-4/3(vô-lí)`

=> Đa thức ko có nghiệm

h) `x^3 -4x =0`

`x(x^2 -4) =0`

`=>[(x=0),(x^2=4 => x=+-2):}`

i) `2x^3 -32x =0`

`2x(x^2 -16)=0`

`=>[(2x=0),(x^2=16):}`

`=>[(x=0),(x=+-4):}`

a)Đặt A (x) = 0

hay \(3x-6=0\)

        \(3x\)      \(=6\)

          \(x\)      \(=6:3\)

          \(x\)      \(=2\)

Vậy \(x=2\) là nghiệm của A (x)

b) Đặt B (x) = 0

hay \(2x-10=0\)

       \(2x\)        \(=10\)

         \(x\)        \(=10:2\)

         \(x\)        \(=5\)

Vậy \(x=5\) là nghiệm của B (x)

c) Đặt C (x) = 0

hay  \(x^2-1=0\)

        \(x^2\)       \(=1\)

        \(x^2\)      \(=1:1\)

        \(x^2\)      \(=1\)

        \(x\)       \(=\overset{+}{-}1\)

Vậy \(x=1;x=-1\) là nghiệm của C (x)

d) Đặt D (x) = 0

hay \(\left(x-2\right).\left(x+3\right)=0\)

⇒ \(x-2=0\) hoặc \(x+3=0\)

*   \(x-2=0\)              * \(x+3=0\)

    \(x\)       \(=0+2\)           \(x\)       \(=0-3\)

    \(x\)       \(=2\)                 \(x\)        \(=-3\)

Vậy \(x=2\) hoặc \(x=-3\)  là nghiệm của D (x)

e) Đặt E (x) = 0

hay \(x^2-2x=0\)

    ⇔\(\left[{}\begin{matrix}x^2-2x\\\left(x-2\right)x\end{matrix}\right.\)

\(\left(x-2\right)x\)   

 ⇔   \(x.\left(2x-1\right)=0\)

  ⇔  \(\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\)                

\(\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=2\) là nghiệm của E (x)

f) Đặt F (x) = 0

hay \(\left(x^2\right)+2=0\)

         \(x^2\)          \(=0-2\)

        \(x^2\)           \(=-2\)

        \(x\)            \(=\overset{-}{+}-2\)

Do \(\overset{+}{-}-2\) không bằng 0 nên F (x) không có nghiệm

Vậy  đa thức F (x)  không có nghiệm

g) Đặt G (x) = 0

hay  \(x^3-4x=0\)

         ⇔\(\left[{}\begin{matrix}x^3-4x\\\left(x-4\right)x^2\end{matrix}\right.\)

⇒ \(\left(x-4\right)x^2=0\)

⇔ \(x.\left(4x-1\right)=0\)

         ⇔\(\left[{}\begin{matrix}x=0\\4x-1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=\dfrac{1}{4}\) là nghiệm của G (x)

h) Đặt H (x) = 0

hay \(3-2x=0\)

            \(2x\)   \(=3+0\)

            \(2x\)   \(=3\)

              \(x\)   \(=3:2\)

              \(x\)    \(=\dfrac{3}{2}\)

Vậy \(x=\dfrac{3}{2}\) là nghiệm của H (x)

CÂU G) MIK KHÔNG BIẾT CÓ  2 NGHIỆM HAY LÀ 3 NGHIỆM NỮA

 

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Lời giải:

1.

$4x+9=0$

$4x=-9$

$x=\frac{-9}{4}$
2.

$-5x+6=0$

$-5x=-6$

$x=\frac{6}{5}$

3.

$x^2-1=0$

$x^2=1=1^2=(-1)^2$

$x=\pm 1$

4.

$x^2-9=0$

$x^2=9=3^2=(-3)^2$

$x=\pm 3$

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

5.

$x^2-x=0$

$x(x-1)=0$

$x=0$ hoặc $x-1=0$

$x=0$ hoặc $x=1$

6.

$x^2-2x=0$

$x(x-2)=0$

$x=0$ hoặc $x-2=0$

$x=0$ hoặc $x=2$

7.

$x^2-3x=0$

$x(x-3)=0$

$x=0$ hoặc $x-3=0$ 

$x=0$ hoặc $x=3$

8.

$3x^2-4x=0$

$x(3x-4)=0$

$x=0$ hoặc $3x-4=0$

$x=0$ hoặc $x=\frac{4}{3}$

3 tháng 4 2018

Bài làm của bạn đây Violympic toán 7Violympic toán 7

3 tháng 4 2018

cảm ơn bn , bn chơi faceko , bn giúp đỡ mk trong học tập , face tớ là Nguyễn Đình Hòa

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.