Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 9:
a: \(A=-0.5x^2yz\cdot\left(-3\right)xy^3z=1.5x^3y^4z^2\)
b: Hệ số là 1,5
Bậc là 9
\(R\left(x\right)=x^2+3x\)
a) Ta có:
\(R\left(x\right)=x^2+3x\)
\(R\left(x\right)=x\left(x+3\right)\)
\(R\left(x\right)=x\left(x+3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+3=0\Rightarrow x=-3\end{matrix}\right.\)
Vậy: Trong các số -1, -2 và -3 thì nghiệm của đa thức là -3
b) Các nghiệm của R(x) là 0 và -3 (ở phần a)
Bài 11:
a: Đặt f(x)=0
=>\(8x^2-6x-2=0\)
a=8; b=-6; c=-2
Vì a+b+c=0 nên pt có hai nghiệm là:
\(x_1=1;x_2=\dfrac{-2}{8}=\dfrac{-1}{4}\)
b: Đặt G(x)=0
\(\Leftrightarrow5x^2-6x+1=0\)
=>5x2-5x-x+1=0
=>(x-1)(5x-1)=0
=>x=1/5 hoặc x=1
c: Đặt h(x)=0
=>-2x2-5x+7=0
\(\Leftrightarrow-2x^2-7x+2x+7=0\)
=>(2x+7)(-x+1)=0
=>x=1 hoặc x=-7/2
a/\(3x-15=0\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
Vậy nghiệm của A là x = 5
b/\(\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy nghiệm của B là \(x\in\left\{2;-3\right\}\)
c/\(\left(2x-1\right)\left(x^2+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\\x^2+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=1\\x^2=-2\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy nghiệm của C là \(x=\dfrac{1}{2}\)
d/\(3x^2-6x=0\)
\(\Rightarrow x\left(3x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy nghiệm của D là \(x\in\left\{0;2\right\}\)
e/\(2x\left(x-3\right)-5\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=5\\x=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=3\end{matrix}\right.\)
Vậy nghiệm của E là \(x\in\left\{\dfrac{5}{2};3\right\}\)
`A(x)=0`
`<=>4x(x-1)-3x+3=0`
`<=>4x(x-1)-3(x-1)=0`
`<=>(x-1)(4x-3)=0`
`<=>` $\left[ \begin{array}{l}x=1\\x=\dfrac341\end{array} \right.$
`B(x)=0`
`<=>2/3x^2+x=0`
`<=>x(2/3x+1)=0`
`<=>` $\left[ \begin{array}{l}x=0\\x=-\dfrac32\end{array} \right.$
`C(x)=0`
`<=>2x^2-9x+4=0`
`<=>2x^2-8x-x+4=0`
`<=>2x(x-4)-(x-4)=0`
`<=>(x-4)(2x-1)=0`
`<=>` $\left[ \begin{array}{l}x=4\\x=\dfrac12\end{array} \right.$
a) f(x) = x(x - 5) + 2(x - 5)
x(x - 5) + 2(x - 5) = 0
<=> (x - 5)(x - 2) = 0
x - 5 = 0 hoặc x - 2 = 0
x = 0 + 5 x = 0 + 2
x = 5 x = 2
=> x = 5 hoặc x = 2
a, f(x) có nghiệm
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
->tự kết luận.
b1, để g(x) có nghiệm thì:
\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)
\(\Rightarrow2x^2-4x-x^2+5+4x=0\)
\(\Rightarrow x^2+5=0\)
Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)
suy ra: k tồn tại \(x^2+5=0\)
Vậy:.....
b2,
\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)
\(=x^2-5x+2x-10\)
\(=x^2-3x-10\)
\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)
\(=x^2+5-x^2+3x-10=3x-5\)
b)
\(M\left(x\right)+N\left(x\right)-P\left(x\right)=6x^3+3x^2+2x\\ 6x^3+3x^2-4x+9-P\left(x\right)=6x^3+3x^2+2x\\ P\left(x\right)=6x^3+3x^2+2x-6x^3-3x^2+4x-9\\ P\left(x\right)=\left(6x^3-6x^3\right)+\left(3x^2-3x^2\right)+\left(2x+4x\right)-9\\ P\left(x\right)=6x-9\)
c)
\(P\left(x\right)=0\\ \Leftrightarrow6x-9=0\\ \Leftrightarrow6x=9\\ \Leftrightarrow x=1,5\)
a, \(A=2\left(x-1,5\right)-5=0\)
\(2x-3-5=0\Leftrightarrow2x-8=0\Leftrightarrow2x=8\Leftrightarrow x=4\)
b, \(B=-3x+8+6x-9=0\)
\(3x-1=0\Leftrightarrow3x=1\Leftrightarrow x=\frac{1}{3}\)
c, \(C=6x-18x^3=0\)
\(6x\left(1-3x^2\right)=0\Leftrightarrow\orbr{\begin{cases}6x=0\\1-3x^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\3x^2=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x^2=\frac{1}{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\pm\frac{1}{\sqrt{3}}\end{cases}}}\)