Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2
\(\Rightarrow M\left(x\right)=x^2-mx+2\)
\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)
\(\Leftrightarrow1-m\left(-1\right)=-2\)
\(\Leftrightarrow m\left(-1\right)=3\)
\(\Leftrightarrow m=-3\)
vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)
4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)
\(\Leftrightarrow K\left(2\right)=a+b=3\)
\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)
\(\Leftrightarrow a+\left(-b\right)+c2=5\)
ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
vậy \(a=1;b=2;c=3\)
1. a) Sắp xếp :
f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9
g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9
b) h(x) = f(x) + g(x)
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )
= 3x2- 3x
c) h(x) có nghiệm <=> 3x2 - 3x = 0
<=> 3x( x - 1 ) = 0
<=> 3x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 1
Vậy nghiệm của h(x) là x= 0 hoặc x = 1
2. D(x) = A(x) + B(x) - C(x)
= 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )
= 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2
= ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 )
= 9x3
b) D(x) có nghiệm <=> 9x3 = 0 => x = 0
Vậy nghiệm của D(x) là x = 0
3. M(x) = x2 - mx + 2
x = -1 là nghiệm của M(x)
=> M(-1) = (-1)2 - m(-1) + 2 = 0
=> 1 + m + 2 = 0
=> 3 + m = 0
=> m = -3
Vậy với m = -3 , M(x) có nghiệm x = -1
4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )
K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1
=> a + 0b + c.0.(-1) = 1
=> a + 0 = 1
=> a = 1
K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3
=> 1 + 1b + c.1.0 = 3
=> 1 + b + 0 = 3
=> b + 1 = 3
=> b = 2
K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5
=> 1 + 5(-1) + c(-1)(-2) = 5
=> 1 - 5 + 2c = 5
=> 2c - 4 = 5
=> 2c = 9
=> c = 9/2
Vậy a = 1 ; b = 2 ; c = 9/2
1/
a/ Đặt f (x) = x2 - 3
Khi f (x) = 0
=> \(x^2-3=0\)
=> \(x^2=3\)
=> \(x=\sqrt{3}\)
Vậy \(\sqrt{3}\)là nghiệm của đa thức x2 - 3.
b/ Đặt g (x) = x2 + 2
Khi g (x) = 0
=> \(x^2+2=0\)
=> \(x^2=-2\)
=> \(x\in\varnothing\)
Vậy x2 + 2 vô nghiệm.
c/ Đặt P (x) = x2 + (x2 + 3)
Khi P (x) = 0
=> \(x^2+\left(x^2+3\right)=0\)
=> \(\hept{\begin{cases}x^2=0\\x^2+3=0\end{cases}}\)=> \(\hept{\begin{cases}x=0\\x=\sqrt{3}\end{cases}}\)(loại)
Vậy x2 + (x2 + 3) vô nghiệm.
d/ Đặt \(Q\left(x\right)=2x^2-\left(1+2x^2\right)+1\)
Khi Q (x) = 0
=> \(2x^2-\left(1+2x^2\right)+1=0\)
=> \(2x^2-\left(1+2x^2\right)=-1\)
=> \(2x^2-1-2x^2=-1\)
=> -1 = -1
Vậy đa thức \(2x^2-\left(1+2x^2\right)+1\)có vô số nghiệm.
e/ Đặt \(h\left(x\right)=\left(2x-1\right)^2-16\)
Khi h (x) = 0
=> \(\left(2x-1\right)^2-16=0\)
=> \(\left(2x-1\right)^2=16\)
=> \(2x-1=4\)
=> 2x = 5
=> \(x=\frac{5}{2}\)
Vậy đa thức \(\left(2x-1\right)^2-16\)có nghiệm là \(\frac{5}{2}\).
1/a, f(x) - g(x) + h(x) = x3 - 2x2 + 3x +1 - x3 - x + 1 +2x2 - 1
=(x3 - x3) + (-2x2 + 2x2) + (3x - x) + (1 + 1 - 1)
=2x + 1
b, f(x) - g(x) + h(x) = 0
<=> 2x + 1 = 0
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2 là nghiệm của đa thức f(x) - g(x) + h(x)
2/ a, 5x + 3(3x + 7)-35 = 0
<=> 5x + 9x + 21 - 35 = 0
<=> 14x - 14 = 0
<=> 14(x - 1) = 0
<=> x-1 = 0
<=> x = 1
Vậy 1 là nghiệm của đa thức 5x + 3(3x + 7) -35
b, x2 + 8x - (x2 + 7x +8) -9 =0
<=> x2 + 8x - x2 - 7x - 8 - 9 =0
<=> (x2 - x2) + (8x - 7x) + (-8 -9)
<=> x - 17 = 0
<=> x =17
Vậy 17 là nghiệm của đa thức x2 + 8x -(x2 + 7x +8) -9
3/ f(x) = g (x) <=> x3 +4x2 - 3x + 2 = x2(x + 4) + x -5
<=> x3 +4x2 - 3x + 2 = x3 + 4x2 + x - 5
<=> -3x + 2 = x - 5
<=> -3x = x - 5 - 2
<=> -3x = x - 7
<=>2x = 7
<=> x = 7/2
Vậy f(x) = g(x) <=> x = 7/2
4/ có k(-2) = m(-2)2 - 2(-2) +4 = 0
=> 4m + 4 + 4 = 0
=> 4m + 8 = 0
=> 4m = -8
=> m = -2
Người hạnh phúc và may mắn nhất trên đời khi làm một điều gì đó tốt đẹp và mang lại niềm vui cho mọi người,một phép lạ sẽ đến với bạn khi làm một việc tốt.Hay ghi nhớ thông điệp này và gửi cho 30 đến 50 người.Sẽ có điều bất ngờ và may mắn đến với bạn sau ngày hôm đó.Nếu bạn không gửi đi ngay sau khi đọc xong,bạn sẽ luôn bị xui xẻo Ai thương mẹ thì gửi cái này cho 15 người ko gửi mà xoá đi mẹ bạn sẽ chết trong vòng 2 ngày nữa
a/Cho \(x^2-1=0\)
⇔ x2 =1
⇔ x =1
b/Cho \(x^2-9=0\)
⇔ x2 =9
⇔ x =3
c/Cho x2-x =0
⇔ x(x-1)=0
⇔ x =0 hoặc x-1=0
⇔ x=0 hoặc x=1
d/ Cho \(x^2-2x=0\)
⇔ x( x -2) =0
⇔ x=0 hoặc x-2 =0
⇔ x=0 hoặc x=2
e/ Cho x3 - 4x =0
⇔ x(x2-4) =0
⇔ x=0 hoặc x2-4 =0
⇔ x=0 hoặc (x-4)=0;(x+4)=0
⇔x =0 hoặc x=4 ; x= -4
g/ Cho 3x4+4x2=0
⇔ x2(3x2+4)=0
⇔x2=0 hoặc (3x+2)(3x-2)
⇔ x =0 hoặc x= \(-\frac{2}{3}\);x=\(\frac{3}{2}\)
h) x2-2x+1=0
<=>(x-1)2=0
<=>x-1=0
<=>x=1
vậy pt có nghiệm là x=1
a) \(f\left(x\right)=3x-9\)
\(f\left(x\right)=3\left(x-3\right)=0\)
Vậy \(x-3=0\Rightarrow x=3\)
Vậy x = 3 là nghiệm của đa thức f(x)
b) \(g\left(x\right)=x^2-5x+4\)
\(g\left(x\right)=x^2-4x-x+4=0\)
\(x\left(x-4\right)-\left(x-4\right)=0\)
\(\left(x-1\right)\left(x-4\right)=0\)
Vậy \(x-1=0\)hoặc \(x-4=0\)
\(\Rightarrow x=1\)hoặc \(x=4\)
Vậy đa thức g(x) có 2 nghiệm là x =1 và x = 4
c) \(h\left(x\right)=2x-\frac{1}{2}\)
\(h\left(x\right)=2x-\frac{1}{2}=0\)
\(2x=\frac{1}{2}\)
\(x=\frac{1}{4}\)
vậy x = 1/4 là nghiệm của đa thức h(x)
d) \(k\left(x\right)=\left(x+2\right).\left(x-3\right)\)
\(k\left(x\right)=\left(x+2\right).\left(x-3\right)=0\)
Vậy \(x+2=0\)hoặc \(x-3=0\)
=> \(x=-2\)hoặc \(x=3\)
Vậy x = -2 và x = 3 là 2 nghiệm của đa thức k(x)
a: K(x)=0
=>x=0 hoặc x+5=0
=>x=0 hoặc x=-5
b: K(x)=0
=>x(2x-5)(x+3)=0
=>x=0 hoặc 2x-5=0 hoặc x+3=0
=>x=0;x=5/2;x=-3
c: K(x)=0
=>x(x^2+4)(2x+1)=0
=>x(2x+1)=0
=>x=0 hoặc x=-1/2
d: G(x)=0
=>(x-3)(x+3)=0
=>x=3 hoặc x=-3
e: G(x)=0
=>x(x^2-25)=0
=>x(x-5)(x+5)=0
=>x=0;x=5;x=-5