Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
39n+46 chia hết cho n+1
39n+39+7 chia hết cho n+1
39(n+1)+7 chia hết cho n+1
=>7 chia hết cho n+1 hay n+1EƯ(7)={1;7}
=>nE{0;6}
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
xin loi , minh lo tay bam gui tra loi , minh giai tiep nhe
n - 1\(\in\)U ( 5 ) = { -5;-1;1;5}
n \(\in\) { -4;0;2;6}
(n-3)+13 chia het cho n-3
vi n-3 chia het cho n-3
nen 13 chia het cho n-3
n-3\(\in\)U ( 13 ) = { -13;-1;1;13}
n \(\in\){ -10;2;4;16}
(3n - 3) +1 chia het cho n - 1
3(n-1)+1 chia het cho n - 1
vi 3 (n-1) chia het cho n - 1
nen 1 chia het cho n - 1
n - 1 \(\in\)U ( 1 )= { -1 ; 1}
n \(\in\){ 0 ; 2 }
tick nha
n - 1 - 5 chia het cho n - 1
vi n - 1 chia het cho n -1
nen 5 chia het cho n- 1
1) Ta có: \(2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
2) Ta có: \(n+2⋮n-3\)
\(\Leftrightarrow n-3+5⋮n-3\)
mà \(n-3⋮n-3\)
nên \(5⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(5\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
Vậy: \(n\in\left\{4;2;8;-2\right\}\)
tổng trên có n+1 số số hạng
\(A=\frac{\left(n+1\right)\left(2n+1+1\right)}{2}\)
\(A=\frac{2\left(n+1\right)^2}{2}\)
\(A=\left(n+1\right)^2\) là chính phương