Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt A = \(6^5.5-3^5\)
\(=\left(2.3\right)^5.5-3^5\)
\(=2^5.3^5.5-3^5\)
\(=3^5.\left(2^5.5-1\right)\)
\(=3^5.\left(32.5-1\right)\)
\(=3^5.159\)
\(=3^5.3.53⋮53\)
Vậy \(A⋮53\)
b) Đặt \(B=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{119}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{119}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(B⋮3\)
\(B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2\right)+3^4.\left(1+2+2^2\right)+...+2^{118}.\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{118}.7\)
\(=7.\left(2+2^4+...+2^{118}\right)⋮7\)
Vậy \(B⋮7\)
\(B=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)
\(+2^{116}.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31+...+2^{116}.31\)
\(=31.\left(2+2^6+...+2^{116}\right)⋮31\)
Vậy \(B⋮31\)
\(B=\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}+2^{16}\right)\)
\(+...+\left(2^{113}+2^{114}+2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)+2^9.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(+...+2^{113}.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(=2.255+2^9.255+...+2^{113}.255\)
\(=255.\left(2+2^9+...+2^{113}\right)\)
\(=17.15.\left(2+2^9+...+2^{113}\right)⋮17\)
Vậy \(B⋮17\)
c) Đặt C = \(3^{4n+1}+2^{4n+1}\)
Ta có:
\(3^{4n+1}=\left(3^4\right)^n.3\)
\(2^{4n}=\left(2^4\right)^n.2\)
\(3^4\equiv1\left(mod10\right)\)
\(\Rightarrow\left(3^4\right)^n\equiv1^n\left(mod10\right)\equiv1\left(mod10\right)\)
\(\Rightarrow3^{4n+1}\equiv\left(3^4\right)^n.3\left(mod10\right)\equiv1.3\left(mod10\right)\equiv3\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(3^{4n+1}\) là \(3\)
\(2^4\equiv6\left(mod10\right)\)
\(\Rightarrow\left(2^4\right)^n\equiv6^n\left(mod10\right)\equiv6\left(mod10\right)\)
\(\Rightarrow2^{4n+1}\equiv\left(2^4\right)^n.2\left(mod10\right)\equiv6.2\left(mod10\right)\equiv2\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(2^{4n+1}\) là \(2\)
\(\Rightarrow\) Chữ số tận cùng của C là 5
\(\Rightarrow C⋮5\)
`a)(x+5)^3=-64`
`(x+5)^3=(-4)^3`
`x+5=-4`
`x=-4-5=-9`
Vậy `x=-9`
`2)(2x-3)^3=8`(9 không được)
`(2x-3)^3=2^3`
`2x-3=2`
`2x=5`
`x=5/2`
Vậy `x=5/2`
A = 3 + 32 + 33 + ...+3100
3A = 32 + 33 + 34 + ...+ 3101
3A - A = ( 32 + 33 + 34 + ...+ 3101 ) - ( 3 + 32 + 33 + ...+3100 )
2A = 3101 - 3
Thay vào 2A + 3 = 3n ta có
3101 - 3 + 3 = 3n
3101 = 3n
=> n = 101
A = 3 + 32 + 33 +....+ 3100
\(\Rightarrow\) 3A= 3.(3 + 32 + 33 +....+ 3100)
\(\Rightarrow\) 3A= 32 + 33 + 34 +.....+ 3101
\(\Rightarrow\)3A - A= (32 + 33 + 34 +.....+ 3101) - (3 + 32 + 33 +....+ 3100)
\(\Rightarrow\)2A= 3101 - 3
mà 2A + 3 = 3n
\(\Rightarrow\)3101 - 3 + 3 = 3n
\(\Rightarrow\)3101 = 3n
\(\Rightarrow\)n=101
(7.x + 1) : 2 - 23 = 2
=> (7.x + 1) : 2 = 2 + 23
=> (7.x + 1) : 2 = 25
=> 7.x + 1 = 25 . 2
=> 7.x + 1 = 50
=> 7.x = 50 - 1
=> 7.x = 49
=> x = 49 : 7 = 7
(7.x + 1) : 2 - 23 = 2
=> (7.x + 1) : 2 = 2 + 23
=> 7.x + 1 = 25 . 2
=> 7.x = 50 - 1
=> 7.x = 49
x = 49 : 7 = 7
Vậy.............
hok tốt
Phần c mình sửa lại đề bài nhé , sai thì thôi
\(\left(x+2\right)^4=\left(x+2\right)^6\)
\(\Rightarrow\left(x+2\right)^6-\left(x+2\right)^4=0\)
\(\Rightarrow\left(x+2\right)^4.\left[1+\left(x+2\right)^2\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^4=0\\\left[1+\left(x+2\right)^2\right]=0\end{cases}\Rightarrow}\hept{\begin{cases}x+2=0\\\left(x+2\right)^2=-1\end{cases}}\)
+Với x + 2 = 0 thì x = -2 ( thỏa mãn )
+Với \(1+\left(x+2\right)^2=0\Rightarrow\left(x+2\right)^2=-1\)mà \(\left(x+2\right)^2\ge0\)nên ta không tìm được x
Vậy x = -2
a,\(\left(x-1\right)^4=256\)
\(\Rightarrow\left(x-1\right)^4=4^4\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
Vậy x = 5
b,\(5^{x+1}=625\)
\(\Rightarrow5^{x+1}=5^4\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=3\)
Vậy x = 3
c \(\left(x+2^4\right)=\left(x+2^6\right)\)
\(\Rightarrow x+16=x+64\)
\(\Rightarrow x-x=64-16\)
\(\Rightarrow0x=48\)
Suy ra không tìm được giá trị nào của x thỏa mãn đề bài
Vậy không tìm được giá trị nào của x thỏa mãn đề bài
a, đề k rõ :v
b, (x + 2)4 = 625
=> (x + 2) = (+5)4
=> x + 2 = + 5
=> x = 3 hoặc x = -7
vậy_
a, \(4^{n+2}\) = 64
\(4^{n+2}\) = \(4^3\)
n + 2 = 3
n = 3 -2
n = 1
a, \(\left(x+2\right)^4\) = 625
\(\left(x+2\right)^4\) = \(5^4\)
x +2 = 5
x= 5 - 2
x= 3
Tk mk nha