Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện nhân đa thức và thu gọn
2 n 2 (n + 1) – 2n( n 2 + n – 3) = 6 n ⋮ 6 với mọi giá trị nguyên n.
bài 1:
\(\frac{2n^2+5n-1}{2n-1}=\frac{2n^2-n+6n-3+2}{2n-1}=\frac{n\left(2n-1\right)+3\left(2n-1\right)+2}{2n-1}=n+3+\frac{2}{2n-1}\)
Để \(2n^2+5n-1⋮2n-1\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
<=>2n thuộc {2;0;3;-1}
<=>n thuộc {1;0;3/2;-1/2}
Mà n thuộc Z
=> n thuộc {1;0}
bài 2 sửa đề x5-5x3+4x
Ta có: \(x^5-5x^3+4x=x\left(x^4-5x^2+4\right)=x\left(x^4-x^2-4x^2+4\right)=x\left[x^2\left(x^2-1\right)-4\left(x^2-1\right)\right]\)
\(=x\left(x^2-4\right)\left(x^2-1\right)=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
Vì x(x-1)(x+1)(x+2)(x-2) là tích 5 số nguyên liên tiếp nên tích này chia hết cho 3,5,8
Mà (3,5,8)=1
=>\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-2\right)⋮3.5.8=120\)
=>đpcm
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
#)Giải :
Giả sử cả A và B đều chia hết cho 5
=> a - b chia hết cho 5
=> 22n + 1 + 22n + 1 + 1 - (22n + 1 - 22n + 1 + 1) = 2.22n + 1 chia hết cho 5
=> 22n + 1 chia hết cho 5
Nhưng vì 22n + 1 có tận cùng là 0 và 5 nên điều này không thể xảy ra
=> Phải có ít nhất A(n) hoặc B(n) không chia hết cho 5, số còn lại chia hết cho 5
=> đpcm
-Ta có: \(2^{4n}=16^n=\overline{...6}\)
\(\Rightarrow2^{4n}.4=\overline{...6}.4\)
\(\Rightarrow2^{4n+2}=\overline{...4}\)
\(A.B=\left(2^{2n+1}+2^{n+1}+1\right)\left(2^{2n+1}-2^{n+1}+1\right)\)
\(=\left[\left(2^{2n+1}+1\right)+2^{n+1}\right]\left[\left(2^{2n+1}+1\right)-2^{n-1}\right]\)
\(=\left(2^{2n+1}+1\right)^2-2^{2.\left(n+1\right)}\)
\(=2^{4n+2}+2^{2n+1}.2+1-2^{2n+2}\)
\(=2^{4n+2}+1=\overline{...4}+1=\overline{...5}⋮5\)
-Như vậy, thì \(A⋮5\) hay \(B⋮5\).
-Còn về hai số đó có thể cùng chia hết cho 5 không thì mình chưa làm được.
-Chứng minh hai số đó không thể cùng chia hết cho 5:
-Vì \(\left(A.B\right)⋮5\) nên sẽ có 1 trong hai số chia hết cho 5. Vì A,B có vai trò giống nhau nên giả sử số đó là A.
-Ta chứng minh \(\left(A+B\right)\) không chia hết cho 5 thì \(B\) cũng không chia hết cho 5.
\(A+B=\left(2^{2n+1}+2^{n+1}+1\right)+\left(2^{2n+1}-2^{n+1}+1\right)\)
\(=2.2^{2n+1}+2=2\left(2^{2n+1}+1\right)\)
-Ta có: \(2^{2n}=4^n\).
+Nếu \(n=2k\) thì \(4^n=4^{2k}=16^k=\overline{...6}\Rightarrow4^n.2+1=\overline{...2}+1=\overline{...3}\) không chia hết cho 5.
+Nếu \(n=2k+1\) thì \(4^n=4^{2k+1}=16^k.4=\overline{...6}.4=\overline{...4}\)
\(\Rightarrow4^n.2+1=\overline{...8}+1=\overline{...9}\).
\(\Rightarrow\) Với mọi giá trị của n thì \(4^n.2+1=2^{2n+1}+1\) không chia hết cho 5.
\(\Rightarrow2\left(2^{2n+1}+1\right)\) không chia hết cho 5 hay \(A+B\) không chia hết cho 5.
\(\Rightarrow B\) không chia hết cho 5.
-Vậy.................
Bài 1:
$A=(n-1)(2n-3)-2n(n-3)-4n$
$=2n^2-5n+3-(2n^2-6n)-4n$
$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$
Ta có đpcm.
Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$
$=(2n-3)(n+2+n)+n(n+10)$
$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$
$=5n^2+8n-6=5n(n+3)-7(n+3)+15$
$=(n+3)(5n-7)+15$
Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$
$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$
$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$
(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7
=6n2-12
=3(2n-4)
=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)
=5n2-17n-12-5n2-3n+2
=-20n-10
=5(-4n-2)
=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n
1:
2n^2+5n-1 chia hết cho 2n-1
=>2n^2-n+6n-3+2 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2}
mà n nguyên
nên n=1 hoặc n=0
2:
a: A=n(n+1)(n+2)
Vì n;n+1;n+2 là 3 số liên tiếp
nên A=n(n+1)(n+2) chia hết cho 3!=6
b: B=(2n-1)[(2n-1)^2-1]
=(2n-1)(2n-2)*2n
=4n(n-1)(2n-1)
Vì n;n-1 là hai số nguyên liên tiếp
nên n(n-1) chia hết cho 2
=>B chia hết cho 8
c: C=n^2+14n+49-n^2+10n-25=24n+24=24(n+1) chia hết cho 24
nhanh dữ, cảm ơn nhé