Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2\cdot8^n+n^3-16n+1\right)⋮3\)
Ta có \(2\cdot8^n+n^3-16n+1=2^{3n+1}+n\left(n-2\right)\left(n+2\right)+1\)
Vì \(2^{3n+1}⋮̸3;1⋮̸3\) nên \(2^{3n+1}+1⋮3;n\left(n-2\right)\left(n+2\right)⋮3\)
Ta thấy \(n;n-2;n+2\) là 3 số cách đều 2 nên tích của chúng chia hết cho 3
Vậy cần tìm n sao cho \(2^{3n+1}+1⋮3\)
Ta có \(1:3R2\) nên \(2^{3n+1}:3R2\)
Mà \(n< 200\Leftrightarrow2^{3n+1}< 2^{601}:3R2\)
Ta thấy với \(2^1;2^3;2^5;...\) đều chia 3 dư 2
Quy luật: 2 mũ lẻ chia 3 dư 2
\(\Rightarrow3n+1\in\left\{1;3;5;...;601\right\}\\ \Rightarrow n\in\left\{0;\dfrac{2}{3};\dfrac{4}{3};...;\dfrac{200}{3}\right\}\)
Mà \(n\in N\)
Vậy \(n=0\)
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Ta phân tích biểu thức đã cho ra nhân tử :
A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n
=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)
=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)
Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)
=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)
Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24
Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm