Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phần c
\(n-7⋮2n+3\)
\(2\left(n-7\right)-\left(2n+3\right)⋮2n+3\)
\(2n-4-2n-3⋮2n+3\)
\(-7⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(-7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng xét :
2n+3 | -1 | 1 | -7 | 7 |
2n | -4 | -2 | -10 | 4 |
n | -1 | 1 | -5 | 2 |
a. \(\frac{n^2+1}{n+1}\in Z\)
Ta có : \(\frac{n^2+1}{n+1}=\frac{n\left(n+1\right)-n+1}{n+1}=n-1=0\)
\(\Leftrightarrow n=1\)
b. \(\frac{n^2-3}{n+2}\in Z\)
Ta có : \(\frac{n^2-3}{n+2}=\frac{n\left(n+2\right)-2n-3}{n+2}=n-\frac{2n+4-7}{n+2}=n-2-\frac{7}{n+2}\)
Để n^2 - 3 / n + 2 thuộc Z thì 7 / n + 2 thuộc Z, n thuộc Z
=> n + 2 thuộc { - 7 ; - 1 ; 1 ; 7 }
=> n thuộc { - 9 ; - 3 ; - 1 ; 5 }
a ) Để \(n^2+1⋮n+1\)
mà \(n\left(n+1\right)⋮n+1\)
\(\Rightarrow n\left(n+1\right)-n^2-1⋮n+1\)
\(\Rightarrow n^2+n-n^2-1⋮n+1\)
\(\Rightarrow n-1⋮n+1\)
\(\Rightarrow n+1-2⋮n+1\)
mà \(n+1⋮n+1\)
\(\Rightarrow2⋮n+1\left(n\inℤ\right)\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;-1;2-2\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3\right\}\)
b ) \(n^2-3⋮n+2\)
mà \(n\left(n+2\right)⋮n+2\)
\(\Rightarrow n\left(n+2\right)-n^2+3⋮n+2\)
\(\Rightarrow n^2+2n-n^2+3⋮n+2\)
\(\Rightarrow2n+3⋮n+2\)
\(\Rightarrow2n+4-1⋮n+2\)
\(\Rightarrow2\left(n+2\right)-1⋮n+2\)
mà \(2\left(n+2\right)⋮n+2\)
\(\Rightarrow1⋮n+2\)
\(\Rightarrow n+2\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{-1;-3\right\}\)
c ) \(n+3⋮n^2+2\)
\(\Rightarrow n\left(n+3\right)⋮n^2+2\)
mà \(n^2+2⋮n^2+2\)
\(\Rightarrow n\left(n+3\right)-n^2-2⋮n^2+2\)
\(\Rightarrow n^2+3n-n^2-2⋮n^2+2\)
\(\Rightarrow3n-2⋮n^2+2\)
mà \(3\left(n+3\right)⋮n^2+2\left(n+3⋮n^2+2\right)\)
\(\Rightarrow3\left(n+3\right)-3n+2⋮n^2+2\)
\(\Rightarrow3n+9-3n+2⋮n^2+2\)
\(\Rightarrow11⋮n^2+2\left(n\in Z\right)\)
\(\Rightarrow n^2+2\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Rightarrow n^2=9\)
\(\Rightarrow\orbr{\begin{cases}n=3\\n=-3\end{cases}}\)
Đối chiều đề bài , ta có \(n=-3\) thỏa mãn .
a, Để 7 chia hết cho n - 3 thì n -3 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) ĐKXĐ \(n\ne3\)
+, Nếu n - 3 = -1 thì n = 2
+' Nếu n - 3 = 1 thì n = 4
+, Nếu n - 3 = -7 thì n = -4 +, Nếu n - 3 = 7 thì n = 10
Vậy n \(\in\left\{2;4;-4;10\right\}\)
b,Để n -4 chia hết cho n + 2 thì n + 2 \(\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)ĐKXĐ \(x\ne-2\)
+, Nếu n + 2 = -1 thì n = -1
+, Nếu n + 2 = 1 thì n = -1
+, Nếu n + 2= 2 thì n = 0
+, Nếu n + 2 = -2 thì n = -4
+, Nếu n + 2 = 3 thì n = 1
+, Nếu n + 2 = -3 thì n = -5
+, Nếu n + 2= 6 thì n = 4
+, Nếu n + 2 = -6 thì n = -8
Vậy cx như câu a nhá
c, Để 2n-1 chia hết cho n+ 1 thì n\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)ĐKXĐ \(x\ne1\)
Bạn làm tương tự như 2 câu trên nhá
d,
Để 3n+ 2chia hết cho n-1 thì n\(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)ĐKXĐ \(x\ne1\)
Rồi lm tương tự
Chúc bạn làm tốt
n-3 chia hết cho n-1
=>n-1-2 chia hết cho n-1
=>2 chia hết cho n-1
=>n-1 E Ư(2)={-1;1;-2;2}
=>n E {-1;0;2;3}
\(\frac{n-3}{n-1}=\frac{n-1-2}{n-1}=1\frac{-2}{n-1}\)
=> để (n-3) chia hết cho (n-1) => -2 chia hết cho n-1
\(n-1\in\left\{-2;-1;1;2\right\}\)
\(n\in\left\{-1;3;0;2\right\}\)
a)n-1 chia hết cho n+5
=>n+5-6 chia hết cho n+5
=>6 chia hết cho n+5
=>n+5 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc {-6;-4;-7;-3;-11;1}
b) 3n+2 chia het cho n-1
=>3n-3+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 thuộc Ư(5)={-1;1;-5;5}
=>n thuộc{0;2;-4;6}
\(A=2018-\left|x-7\right|-\left|y+2\right|\)
Ta có: \(\hept{\begin{cases}\left|x-7\right|\ge0\forall x\\\left|y+2\right|\ge0\forall y\end{cases}}\Rightarrow2018-\left|x-7\right|-\left|y+2\right|\le2018\)
\(A=2018\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}}\)
Vậy \(A_{m\text{ax}}=2018\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}\)
Tham khảo~
Ta có :
n + 13 /n-2
==> n + 13 = n - 2 +11/n - 2 . Mà n-2 / n-2 ==> 11/n-2
n-2 thuocƯ ( 11 ) = ( +-1 , +-11 )
Ai tk mk mk tk lại!
ta có n+13 /n-2
suy ra n+13= n-2+11/ n-2Mà n-2/ n-2 suy ra 11/ n-2
n-2 thuocƯ(11)={+-1;+-11}
ta có
(3n+2) chia hết cho (4n+3)
-> 4(3n+2) chia hết cho (4n+3)
-> 12n+8 chia hết cho 4n+3
-> 12n+8+9-9 chia hết 4n+3
->12n+9-1 chia hết 4n+3
-> 3(4n+3)-1 chia hết cho 4n+3
-> -1 chia hết cho 4n+3
-> 4n+3 thuộc Ư (-1)
-> 4n+3 thuộc {1;-1}
-> 4n thuộc {-2; -4}
n thuộc { -1/2 ; -1}
vì n thuộc Z nên ta chọn n = -1
\(n-3\) \(\vdots\) \(2-n\)
Ta có :
n \(\vdots\) n
=> n - 3 \(\vdots\) 2 - n <=> - 3 \(\vdots\) 2
=> 2 \(\in\) Ư ( - 3 ) = { - 3 ; - 1 ; 1 ; 3 }
* Thử lại kết quả
Mà n - 3 \(\vdots\) 2 - n
Vậy n nhận các cặp giá trị sau : ( 0 , 5 ) ; ( 4 , 1 ) ; ( 3 , 6 )