Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có: n + 10 \(⋮\) n + 3 ( n \(\in\) Z )
\(\Rightarrow n+3+7⋮n+3\)
\(\Rightarrow\) 7 \(⋮\) n + 3
\(\Rightarrow\) n + 3 \(\in\) Ư(7) = { -1 ; 1 ; -7 ; 7 }
\(\Rightarrow\) n \(\in\) { -4 ; -2 ; -10 ; 4 }
Câu b làm t. tự tách n - 15 thành n + 2 - 17
- 17 \(⋮\) n + 2
Câu c tách 2n - 17 thành 2( n - 3 ) - 11
- 11 \(⋮\) n - 3
d/ Ta có: \(n^2+n+10\) \(⋮\) n + 2 ( n \(\in\) Z )
\(\Leftrightarrow\) n( n + 2 ) - n + 10 \(⋮\) n + 2
\(\Leftrightarrow\) n( n + 2 ) - n + 2 + 8 \(⋮\) n + 2
Vì n( n + 2 ) \(⋮\) n + 2 và ( - n + 2) \(⋮\) n + 2
\(\Rightarrow\) 8 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư (8) = { -1 ; 1 ; -2 ; 2 ; -4 ; 4 ; -8 ; 8 }
\(\Rightarrow\) n \(\in\) { -3 ; -1 ; -4 ; 0 ; -6 ; 2 ; -10 ; 6 }
Chúc bạn học tốt!!!
a) A = { 16;17;18 }
b) B = { 1;2;3;4;5;6 }
c) C = { 11;12;13 }
a) A = {16;17;18}
b) B = {1;2;3;4;5;6}
c) C = {10;11;12;13;14}
a)Để phân số thuộc Z
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
b)Để phân số thuộc Z
=>2n+3 chia hết cho 7
=>2n+3-7 chia hết cho 7
=>2n-4 chia hết cho 7
=>2n:7(dư 4)
=>2n đồng dư với 4(mod 7)
=>n đồng dư với 2(mod 7)
=>n:7(dư 2)
=>n-2 chia hết cho 7
=>n-2=7k
=>n=7k+2(k thuộc Z)
Vậy n=7k+2(k thuộc Z)
TA có
\(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a\left(b+c\right)}{b\left(b+c\right)}-\frac{b\left(a+c\right)}{b\left(b+c\right)}\)
\(=\frac{ab+ac-ab-bc}{b\left(b+c\right)}=\frac{ac-bc}{b\left(b+c\right)}=\frac{c\left(a-b\right)}{b\left(b+c\right)}\)
vì a>b => a-b > 0 => c(a-b) > 0
=> \(\frac{c\left(a-b\right)}{b\left(b+c\right)}>0\)
\(=>\frac{a}{b}-\frac{a+c}{b+c}>0\)
\(=>\frac{a}{b}>\frac{a+c}{b+c}\)
=> đpcm
b) Ta có a+b < a+b+c ; b+c < a+b+c ; c+a < a+b+c
\(=>\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(=>\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\) (1)
Lại có
Áp dùng câu a ta có a< a+b ; b< b+c ; c<c+a
=> \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
\(=>\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}=2\) (2)
Từ (1) và (2) => dpcm
Câu 5
Nếu p lẻ thì 3p lẻ nên 3p+7 chẵn,mà 3p+7 lầ số nguyên tố
Suy ra 3p+7=2(L)
Khí đó p chẵn,mà p là số nguyên tố nên p=2
Vậy p=2
Câu 3
Ta có:\(\overline{ab}-\overline{ba}=9\times\left(a-b\right)=3^2\times\left(a-b\right)\)
Mà ab-ba là số chính phương nên 3^2X(a-b) là số chính phương
Suy ra a-b là số chính phương
Mà 0<a-b<9 nên \(a-b\in\left\{1;4\right\}\)
Với a-b=1 mà 0<b<a nên ta có bảng sau:
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Với a-b=4 mà a>b>0 nên ta có bảng sau:
a | 5 | 6 | 7 | 8 | 9 |
b | 1 | 2 | 3 | 4 | 5 |
Vậy ..............
#)Giải :
\(\frac{1}{9}.3^4.3^n=3^7\)
\(\frac{1}{9}.81.3^n=3^7\)
\(9.3^n=3^7\)
\(3^2.3^n=3^7\)
\(\Rightarrow2+n=7\)
\(\Rightarrow n=5\)
#~Will~be~Pens~#