\(10-3n\)chia hết cho \(1-n\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

Ta có: 10 - 3n = 3(1 - n) + 7

Do 3(1 - n)  \(⋮\)1 - n => 7 \(⋮\)1 - n

=> 1 - n \(\in\)Ư(7) = {1; -1; 7; -7}

Với : +)1 - n = 1 => n = 0

 +) 1 - n = -1 => n = 2

+)1 - n = 7=> n = -6

+) 1 -n = -7 => n = 8

Vậy ...

16 tháng 7 2016

a) \(n^2-3n+9\)chia het cho \(n-2\)

\(\Leftrightarrow\)\(n^2-2n-n-2+11\)chia het cho \(n-2\)

\(\Leftrightarrow\)\(\left(n-2\right)\left(n+1\right)+11\)chia het cho \(n-2\)

\(\Leftrightarrow\)11 chia het cho \(n-2\)

\(\Rightarrow\)\(n-2\in U\left(11\right)\)\(\Rightarrow\)\(n-2\in\left\{-11;-1;1;11\right\}\)

                                                   \(\Rightarrow\)\(n\in\left\{-9;1;3;13\right\}\)

16 tháng 7 2016

b) 2n-1 chia hết cho n-2

\(\Rightarrow2n-2+3\) chia hết cho\(n-2\)

\(\Rightarrow3\)chia hết cho \(n-2\)

\(\Rightarrow n-2\in U\left(3\right)\)\(\Rightarrow n-2\in\left\{-3;-1;1;3\right\}\)\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)

20 tháng 2 2017

a/ \(\frac{3n}{n-1}=\frac{3n-3+3}{n-1}=3+\frac{3}{n-1}\)

để 3n chia hết cho n-1 thì n-1 phải thuộc ước của 3

suy ra n-1 thuộc -3;-1;1;3

suy ra n thuộc -2;0;2;4

b/\(\frac{n+10}{n-1}=\frac{n-1+11}{n-1}=1+\frac{11}{n-1}\)

để n+10 là bội của n-1 thì 11 phải là bội của n-1

suy ra n-1 thuộc -11;-1;1;11

suy ra n thuộc -10;0;2;12

gặp dạng toán như vậy thì bạn cứ áp dụng cách này để làm nhé

c/ gọi ba số đó là n-1;n;n+1

ta thấy \(\left(n-1\right)+n+\left(n+1\right)=3n\)chia hết cho 3 với mọi n thuộc Z

vậy tổng 3 số liên tiếp luôn chia hết cho 3

nhớ k cho mình nhé  ^.^

20 tháng 2 2017

Ta có : 3n chia hết cho n - 1 

<=> 3n - 3 + 3 chia hết cho n - 1

<=> 3(n - 1) + 3 chia hết cho n - 1

<=> 3 chia hết cho n - 1

<=> n - 1 thuộc Ư(3) = {-3;-1;1;3}

Ta có bảng:

n - 1-3-113
n-2024
15 tháng 6 2017

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

13 tháng 7 2016

3n+4=3n.34=3n.81. suy ra 3n+1 đồng dư 3n.81+1 nên nó chia hết 10

13 tháng 7 2016

3^(n+4)+1=3^n.3^4+81-80=3^n.81+81-80=81.(3^n+1)-80

ma:3^n+1 chia het cho 10 nen81.(3^n+1) chia het cho 10 va 80 chia het cho 10

tu do tan duoc81.(3^n+1)-80 chia het cho 10 hay3^n+4+1 chia het cho10

10 tháng 8 2015

1 ) n rỗng

2 ) n = 0 

7 tháng 3 2018

n2-5n+1=n2-2n-3n+6-5=n(n-2)-3(n-2)-5 = (n-2)(n-3)-5

=> Để chia hết cho n-2 thì 5 chia hết cho n-2 => n-2=(-5,-1,1,5)

=> n=(-3, 1, 3, 7)