K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi p là ước chung nguyên tố của \(3n+2;7n+1\)

Ta có 

\(\hept{\begin{cases}3n+2⋮p\\7n+1⋮p\end{cases}}\Rightarrow\hept{\begin{cases}21n+14⋮p\left(1\right)\\21n+3⋮p\left(2\right)\end{cases}}\)

Từ \(\left(1\right);\left(2\right)\Rightarrow(21n+14)-(21n+3⋮)p\)

\(\Rightarrow21n+14-21n-3⋮p\)

\(\Rightarrow11⋮p\)mà p là số nguyên tố

\(\Rightarrow p=11\)

với p=11 ta có

\(\hept{\begin{cases}3n+2⋮11\\7n+1⋮11\end{cases}}\Rightarrow\hept{\begin{cases}3n+2-11⋮11\\7n+1-22⋮11\end{cases}}\Rightarrow\hept{\begin{cases}3n-9⋮11\\7n-21⋮11\end{cases}}\Rightarrow\hept{\begin{cases}3.\left(n-3\right)⋮11\\7.\left(n-3\right)⋮11\end{cases}}\) mà \(\hept{\begin{cases}\left(3,11\right)=1\\\left(7,11\right)=1\end{cases}}\)\(\Rightarrow n-3⋮11\)

\(\Rightarrow n-3=11k\)

\(\Rightarrow n=11k+3\)

=>Với n=11+k3 thì 3n+2/7n+1 tối giản

Hok tốt !!!!!!!

29 tháng 8 2020

Gọi d là ước chung nguyên tố của 3n + 2 và 7n + 1

3n + 2 chia hết cho d

7n + 1 chia hết cho d

=> ( 3n + 2 ) - ( 7n + 1 ) chia hết cho d

=> 7 ( 3n + 2 ) - 3 ( 7n + 1 ) chia hết cho d

=> 21n + 14 - 21n - 3 chia hết cho d

=> 11 chia hết cho d

Mà d là số nguyên tố => d = 11

=> 3n + 2 chia hết cho 11

=> 3n + 2 + 55 chia hết cho 11 ( Vì 55 chia hết cho 11 )

=> 3n + 57 chia hết cho 11

=> 3 ( n + 19 ) chia hết cho 11

Vì \(n\in N\)=> n + 19 chia hết cho 11

=> n + 19 = 11k \(\left(k\in N\right)\)

=> n = 11k - 19

Vậy \(n\ne11k-19\) thì phân số trên tối giản

20 tháng 3 2019

nếu chưa tối giản thi làm kiểu gì ạ

27 tháng 3 2020

gọi d là ước chung của 3n + 2 và 7n + 1

\(\Rightarrow\)3n + 2 \(⋮\)\(\Rightarrow\)7\((\)3n + 2\()\)\(⋮\)d

         7n + 1\(⋮\)d\(\Rightarrow\)3\((\)7n + 1\()\)\(⋮\)d

21n + 14 - 21n + 3 \(⋮\)d

\(\Leftrightarrow\)\(⋮\)d . do d\(\in\)Ư của số lẻ 3n + 2 \(\Rightarrow\)d = \(\pm\)9

22 tháng 5 2017

Gọi d là ước chung nguyên tố của 2n + 3 và 4n + 1

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+1⋮d\end{matrix}\right.\)

+) Vì : \(2n+3⋮d;2\in N\)

\(\Rightarrow2\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\)

Mà : \(4n+1⋮d\)

\(\Rightarrow\left(4n+6\right)-\left(4n+1\right)⋮d\)

\(\Rightarrow4n+6-4n-1⋮d\Rightarrow5⋮d\)

\(\Rightarrow\) d là ước của 5 ; d nguyên tố

\(\Rightarrow d=5\)

Với \(d=5\Rightarrow4n+1⋮5\)

\(\Rightarrow5n-n+1⋮5\Rightarrow5n-\left(n-1\right)⋮5\)

Vì : \(n\in N\Rightarrow5n⋮5\)

\(\Rightarrow n-1⋮5\Rightarrow n-1=5k\Rightarrow n=5k+1\)

Thử lại : n = 5k + 1 ( \(k\in N\))

\(2n+3=2\left(5k+1\right)+3=10k+5=5\left(2k+1\right)⋮5\)

\(4n+1=4\left(5k+1\right)+1=20k+5=5\left(4k+1\right)⋮5\)

\(\Rightarrow\) Với n = 5k + 1 thì phân số trên rút gọn được

\(\Rightarrow n\ne5k+1\) thì phân số trên tối giản

Vậy \(n\ne5k+1\)

Hai câu cuối tương tự

11 tháng 2 2019

Nguyễn Kim Chi bn lấy bài ở đâu mà khó thế ???

Mình giải đc một tí , nhg thấy sai rùi ko bít làm lun . Sorry nhìu nha bạn )))^_^

3 tháng 4 2017

a, Gỉa sử phân số\(\dfrac{2n+5}{3n+7}\) chưa tối giản

Khi đó gọi d là một ước nguyên tố của 2n+5 và 3n+7

Ta có: 2n+5\(⋮\) d; 3n+7\(⋮\) d

\(\Rightarrow\)3(2n+5)-2(3n+7) \(⋮\) d

\(\Rightarrow\)6n+15- 6n- 14\(⋮\)d

\(\Rightarrow\)1\(⋮\) d

Mà d là số nguyên tố\(\Rightarrow\)d \(\in\)\(\varnothing\)

Vậy phân số \(\dfrac{2n+5}{3n+7}\) tối giản với mọi n\(\in\)Z

b, Để Q\(\in\)Z\(\Rightarrow\) 2n+5\(⋮\) 3n+7

\(\Rightarrow\)6n+15\(⋮\) 3n+7

\(\Rightarrow\)6n+ 14 + 1\(⋮\)3n+7

\(\Rightarrow\)2.(3n+7)+1\(⋮\)3n+7

\(\Rightarrow\)1:3n+7\(\Rightarrow\)3n+7\(\in\)Ư(1)={\(\pm\)}

+, Với 3n+7=-1

\(\Rightarrow\)3n=(-1)-7

\(\Rightarrow\)2n=-8

\(\Rightarrow\)n=-8.3\(\notin\)Z

\(\Rightarrow\)Để Q \(\in\) Z thì n=-2

Chúc bạn học tốtbanhqua

2 tháng 4 2017

Để Q là số nguyên thì

\(2n+5⋮3n+7\)

\(\Rightarrow3\left(2n+5\right)=6n+15=2\left(3n+7\right)+1⋮3n+7\)

\(2\left(3n+7\right)⋮3n+7\)

\(\Rightarrow1⋮3n+7\)

3n+7=1=>n=-2

3n+7=-1=>n=/

Vậy số nguyên để Q là số nguyên là -2

2 tháng 7 2015

a, Gọi UCLN(2n+1, 3n+2) là d. Ta có:

2n+1 chia hết cho d=> 6n+3 chia hết cho d

3n+2 chia hết cho d=> 6n+4 chia hết cho d

=> 6n+4 - (6n+3) chia hết cho d

=> 1 chia hết cho d

=>ƯCLN(2n+1,3n+2)=1

=>\(\frac{2n+1}{3n+2}\)tối giản(đpcm)

21 tháng 4 2019

       Gọi ƯCLN ( 3n + 1 , 3n + 4 ) là d

 Xét hiệu :

              ( 3n + 4 ) - ( 3n + 1 ) \(⋮\)d

                         4 - 1 \(⋮\)d

                            3 \(⋮\)d

                           \(\rightarrow d\inƯ\left(3\right)\rightarrowƯ\left(3\right)=\left\{1,-1,-3,3\right\}\)

                           \(d\ne3\)vì \(3n+4⋮̸\)\(3\)

                              \(\rightarrow d=1,d=-1\)

                            Vậy ....

                                                  #Cothanhkhe

21 tháng 4 2019

Gọi ƯCLN(3n+1;3n+4)=d

Suy ra 3n+1 và 3n+4 chia hết cho d

Suy ra (3n+4)-(3n+1) chia hết cho d 

                     3                 chia hết cho d

               suy ra d thuộc tợp hợp (+-1;+-3 )

mà 3n+1 ko chia hết cho d suy ra d=+-1 suy ra P/S đó là PS tối giản

Chúc học tốt

Để phân số nguyên thì n + 10 chia hết cho 2n - 8

=> 2.(n + 10) chia hết cho 2n - 8

=> 2n + 20 chia hết cho 2n - 8

=> 2n - 8 + 28 chia hết cho 2n - 8

Do 2n - 8 chia hết cho 2n - 8 => 28 chia hết cho 2n - 8

Do  n ∈ N⇒2n − 8 ≥ −8 mà 2n - 8 là số chẵn

=> 2n − 8 ∈ { −2;2; − 4;4;14;28 }

=> 2n ∈  { 6;10;4;12;22;36 }

=> n ∈ { 3;5;2;6;11;18 }

11 tháng 2 2019

các bn chỉ cần lm phần phân số tối giản thôi còn giá trị số nguyên mk lm đc rồi

21 tháng 5 2017

a/ n = 0

b/ n = 0

c/ n = 0

21 tháng 5 2017

Tất cả đều bằng 0 bn à