K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Ta có ; \(\frac{2n}{n-1}=\frac{2n-2+2}{n-1}=\frac{2\left(n-1\right)+2}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{2}{n-1}=2+\frac{2}{n-1}\)

Để \(\frac{2n}{n-1}\)nguyên thì 2 chia hết cho n -1 

=> n - 1 thuộc Ư(2) = {-2;-1;1;2}

Ta có bảng : 

n - 1-2-112
n-1023
25 tháng 6 2017

1) Để phân thức đạt trị nguyên

=> n - 5 chia hết cho 2n + 1

<=> 2n - 10 chia hết cho 2n + 1

<=> 2n + 1 - 11 chia hết cho 2n + 1

<=> 11 chia hết cho 2n + 1

=> 2n + 1 thuộc Ư(11) = {1 ; -1 ; 11 ; -11}

Ta có bảng sau :

2n + 11-111-11
n0-15-6

2) Như câu 1 , ta có :

n2 + 4 chia hết cho n - 1

n2 - n + n + 4 chia hết cho n - 1

<=> n(n - 1) + n + 4 chia hết cho n - 1

<=> n - 1 + 5 chia hết cho n - 1

=> 5 chia hết cho n - 1

=> n - 1 thuộc Ư(5) = {1 ; -1; 5 ; -5}

Còn lại giống 1 , lập bảng xét giá trị n nha !

25 tháng 6 2017

Để ; \(\frac{n+3}{n+1}\in Z\)

Thì n + 3 chia hết cho n + 1

=> (n + 1) + 2 chia hết cho n + 1

=> 2 chia hết cho n + 1

=> n + 1 thuộc Ư(2) = {-2;-1;1;2}

Ta có bảng : 

n + 1-2-112
n-3-201
15 tháng 12 2016

làm câu

Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{1;0;3;-2\right\}\)

7 tháng 1 2023

      `2n^2+3n+3 | 2n-1`

`-`   `2n^2-n`           `n+2`

     ------------------

                `4n+3`

          `-`   `4n-2`

              ------------

                       `5`

`<=> (2n^2+3n+3) : (2n-1)=5`

`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)

`+, 2n-1=1=>2n=2=>n=1`

`+, 2n-1=-1=>2n=0=>n=0`

`+, 2n-1=5=>2n=6=>n=3`

`+,2n-1=-5=>2n=-4=>n=-2`

vậy \(n\in\left\{1;0;3;-2\right\}\)

23 tháng 10 2019

Với n thuộc Z

Có: \(A=2n^2+5n-3=2n^2+6n-n-3=2n\left(n+3\right)-\left(n+3\right)=\left(2n-1\right)\left(n+3\right)\)

=> \(\left|A\right|=\left|\left(n+3\right)\left(2n-1\right)\right|\)

Để | A | là số nguyên tố \(n+3=\pm1\)hoặc \(2n-1=\pm1\)

+) Với n + 3 = 1 => n =-2  => | A | = 5 là số nguyên tố => n = - 2 thỏa mãn.

+) Với n + 3 = - 1 => n = - 4 => | A | = 9 không là số nguyên tố => loại

+) Với 2n -1 = 1 => n =1 => |A | = 4 loại

+) Với 2n -1 =-1 => n = 0 => | A | = 3 là số nguyên tố => n = 0 thỏa mãn.

Vậy n=-2 hoặc n =0.