Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2n\in\left\{0;-2\right\}\)
hay \(n\in\left\{0;-1\right\}\)
Mk trả lời mỗi câu khó nha!!!
d*) \(\dfrac{n+1}{2n+1}\in Z\)
Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(n+1⋮2n+1\)
\(\Rightarrow2.\left(n+1\right)⋮2n+1\)
\(\Rightarrow2n+2⋮2n+1\)
\(\Rightarrow2n+1+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
2n+1 | -1 | 1 |
n | -1 | 0 |
Vậy \(n\in\left\{-1;0\right\}\)
Để a là phân số tối giản thì ƯCLN(3n-1;n-2)=1
Gọi ƯCLN(3n-1;n-2)=d => 3n-1 chia hết cho d;n-2 chia hết cho d
=>3n-1-(n-2) chia hết cho d
=>3n-1-3(n-2) chia hết cho d
=>3n-1-3n-6 chia hết cho d
=>-5 chia hết cho d
Việc khẳng định ƯCLN (2n+1, 9n+6)=3 là sai nhé bạn. 3 là ƯCLN có thể xảy ra của $2n+1, 9n+6$ thôi. Còn việc đưa ra khẳng định ƯCLN(2n+1, 9n+6)=3 là sai vì 2n+1 chưa chắc đã chia hết cho 3 với n là số tự nhiên.
3n+5 chia hết cho n-1
-> 3n-3 + 8 chia hết cho n-1
3.(n-1)+8 chia hết cho n-1
mà 3.(n-1) chia hết cho n-1
-> 8 chia hết cho n-1
n-1 thuộc Ư(8)
Tự tính nốt nha =)
b,8n+3 chia hết cho 2n-3
8n-12+15 chia hết cho 2n-3
4.(2n-3)+15 chia hết cho 2n-3
Mà 4.(2n-3) chia hết cho 2n-3
-> 15 chia hết cho 2n-3
2n-3 thuộc Ư15
Tự tính nốt nha =)
Đặt \(A=\frac{n+3}{n-2}\left(ĐKXĐ:x\ne2\right)\)
Ta có:\(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)
Để A nguyên thì 5 chia hết cho n-2. Hay \(\left(n-2\right)\inƯ\left(5\right)\)
Ư (5) là:[1,-1,5,-5]
Do đó ta có bảng sau:
n-2 | -5 | -1 | 1 | 5 |
n | -3 | 1 | 3 | 7 |
Vậy để A nguyên thì n=-3;1;3;7
Vì n thuộc Z nên n+3 và n-2 cũng thuộc Z
Mà n+3/n-2 thuộc Z nên n+3 chia hết cho n-2
=>(n-2)+5chia hết cho n-2
=>5 chia hết cho n-2
=>n-2 thuộc ƯC (5)={5;-5;1;-1}
=>n thuộc {7;-3;3;1)
Vậy n thuộc..........
\(\left(m+2\right)\left(n+3\right)=7\)
\(\Rightarrow m+2,n+3\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
Do \(m,n\in N\) nên không có m và n thỏa mãn
3n-1\(⋮\)n+1
3(n+1)\(⋮\)n+1
3n-1+3(n+1)\(⋮\)n+1
3n-1+3n-3\(⋮\)n+1
4\(⋮\)n+1
\(\Rightarrow\)n+1={1;2;4}
\(\Rightarrow\)n={0;1;3}
Để n + 3 / n - 2 thuộc Z thì n + 3 chia hết n - 2
<=> n - 2 + 5 chia hết n - 2
=> 5 chia hết n - 2
=> n - 2 thuộc Ư(5) = {-1;1;-5;5}
=> n = {1;3;-3;7}