\(B=\frac{10n}{5n-3}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

theo bài ra ta có 
n = 8a +7=31b +28 
=> (n-7)/8 = a 
b= (n-28)/31 
a - 4b = (-n +679)/248 = (-n +183)/248 + 2 
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên 
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên ) 
=> n = 183 - 248d (với d là số nguyên <=0) 
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3 
=> n = 927

4 tháng 9 2016

Ta có: \(\left(3y+7\right)^2\ge0\Rightarrow\left(3y+7\right)^2+5\ge5\)

=>\(G=\frac{2}{\left(3y+7\right)^2+5}\le\frac{2}{5}\)


Dấu "=" xảy ra khi: 3y+7=0 =>y=-7/3

Vậy GTLN của G là 2/5 tại y=-7/3 

:)) 

7 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{8n}{4n-3}=\frac{8n-6+6}{4n-3}=\frac{8n-6}{4n-3}+\frac{6}{4n-3}=\frac{2\left(4n-3\right)}{4n-3}+\frac{6}{4n-3}=2+\frac{6}{4n-3}\)

Để A có giá trị nguyên thì \(\frac{6}{4n-3}\) phải có giá trịn nguyên hay \(6⋮\left(4n-3\right)\)\(\Rightarrow\)\(\left(4n-3\right)\inƯ\left(6\right)\)

Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

Suy ra : 

\(4n-3\)\(1\)\(-1\)\(2\)\(-2\)\(3\)\(-3\)\(6\)\(-6\)
\(n\)\(1\)\(\frac{1}{2}\)\(\frac{5}{4}\)\(\frac{1}{4}\)\(\frac{3}{2}\)\(0\)\(\frac{9}{4}\)\(\frac{-3}{4}\)

Vì \(n\inℤ\) nên \(n\left\{0;1\right\}\)

Vậy \(n\in\left\{0;1\right\}\) thì A có giá trị nguyên 

Chúc bạn học tốt ~ 

7 tháng 4 2018

\(b)\) Ta có : 

\(A=\frac{8n}{4n-3}=2+\frac{6}{4n-3}\) ( câu a mình có phân tích rùi ) 

Để A đạt GTNN thì \(\frac{6}{4n-3}\) phải đạt GTNN hay \(4n-3< 0\) và đạt GTLN 

\(\Rightarrow\)\(4n-3=-1\)

\(\Leftrightarrow\)\(4n=2\)

\(\Leftrightarrow\)\(n=\frac{1}{2}\) ( loại vì n là số nguyên ) 

\(\Rightarrow\)\(4n-3=-2\)

\(\Leftrightarrow\)\(4n=1\)

\(\Leftrightarrow\)\(\frac{1}{4}\)

\(\Rightarrow\)\(4n-3=-3\)

\(\Leftrightarrow\)\(4n=0\)

\(\Leftrightarrow\)\(n=0\)

Suy ra : 

\(A=\frac{8n}{4n-3}=\frac{8.0}{4.0-3}=\frac{0}{0-3}=0\)

Vậy \(A_{min}=0\) khi \(n=0\)

Chúc bạn học tốt ~ 

4 tháng 3 2018

\(A=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=1+\frac{10}{4-x}\)

Để \(A\)có GTLN \(\Leftrightarrow\)4-x có GTNN, \(4-x>0\)và \(x\inℤ\)

                     \(\Rightarrow4-x=1\Rightarrow x=3\)

Vậy, A có GTLN là 11 khi x=3

                  

4 tháng 3 2018

Có \(A=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=1+\frac{10}{4-x}\)

Nếu A có GTLN \(\Rightarrow\)4-x có GTNN \(\Rightarrow\)4 - x > 0 ( x \(\inℤ\))

\(\Rightarrow\)4 - x = 1

\(\Leftrightarrow\)x = 3

Vậy A có GTLN là 11 nếu x = 3