K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: n<>-1/2

Để B là số nguyên thì \(6n-8⋮2n+1\)

=>\(6n+3-11⋮2n+1\)

=>\(-11⋮2n+1\)

=>\(2n+1\in\left\{1;-1;11;-11\right\}\)

=>\(n\in\left\{0;-1;5;-6\right\}\)

10 tháng 8 2017

a, (5n+2)9 = (2n+7)7

  45n+18=14n+49

  31n=31

  n=1

28 tháng 3 2018

a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)

\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)

\(\Leftrightarrow45n+18=14n+49\)

\(\Leftrightarrow31n=31\)

\(\Leftrightarrow n=1\)

n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)

Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.

\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)

Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)

Ta có bảng:

2n + 71-131-31
n-3-412-19
KLTMTMTMTM

 

Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)

c

Bài 2: 

\(\Leftrightarrow n+1\in\left\{1;2;4\right\}\)

hay \(n\in\left\{0;1;3\right\}\)

8 tháng 8 2023

a, Ta có : \(\text{n + 5 = (n - 1)+6}\)

Vì \(\text{(n-1) ⋮ n-1}\)

Nên để \(\text{n+5 ⋮ n-1}\) `n-1`

Thì \(\text{6 ⋮ n-1}\) 

\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)

\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)

\(\text{________________________________________________________}\)

b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)

Vì \(\text{2(n+2) ⋮ n+2}\)

Nên để \(\text{2n-4 ⋮ n+2}\)

Thì \(\text{8 ⋮ n+2}\)

\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)

\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )

\(\text{_________________________________________________________________ }\)

c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)

Vì \(\text{3(2n+1) ⋮ 2n+1}\)

Nên để\(\text{ 6n+4 ⋮ 2n+1}\)

Thì \(\text{1 ⋮ 2n+1}\)

\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)

\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)

\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )

\(\text{_______________________________________}\)

Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)

Vì \(\text{-2(n+1) ⋮ n+1}\)

Nên để \(\text{3-2n ⋮ n+1}\)

Thì\(\text{ 5 ⋮ n + 1}\)

\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )

 

 \(\dfrac{2n+15}{n+1}=\dfrac{2n+2+13}{n+1}=\dfrac{2\left(n+1\right)+13}{n+1}=\dfrac{2\left(n+1\right)}{n+1}+\dfrac{13}{n+1}=2+\dfrac{13}{n+1}\left(ĐKXĐ:n\ne-1\right)\)

Để \(\dfrac{2n+15}{n+1}\in Z\) thì \(13⋮n+1\) hay \(n+1\inƯ\left(13\right)\)  

Xét bảng :

Ư(13) n+1 n
13 13 12
-13 -13 -14
1 1 0
-1 -1 -2

 

Vậy để 2n+15/n+1 là số nguyên thì \(n\in\left\{-14;-2;0;12\right\}\)

 

5 tháng 3 2023

ai nhanh nhất mik tick cho

\(A=\dfrac{2n-3-n}{n+8}=\dfrac{n-3}{n+8}=\dfrac{n+8-11}{n+8}=1-\dfrac{11}{n+8}\)

Để A nguyên thì 11 chia hết cho n+8

=>\(n+8\in\left\{1;-1;11;-11\right\}\)

=>\(n\in\left\{-7;-9;3;-19\right\}\)

4 tháng 4 2023

cô mik lm dài hơn nhưng giống k/q =)))

 

18 tháng 8 2021

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên

=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }

=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }

b. thêm điều kiện n\(\in\)Z

Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n ) 

NV
5 tháng 3 2023

\(\dfrac{2n+15}{n+1}\in Z\Rightarrow2n+15⋮n+1\)

\(\Rightarrow2n+15-2\left(n+1\right)⋮n+1\)

\(\Rightarrow13⋮n+1\)

\(\Rightarrow n+1=Ư\left(13\right)\)

\(\Rightarrow n+1=\left\{-13;-1;1;13\right\}\)

\(\Rightarrow n=\left\{-14;-2;0;12\right\}\)

6 tháng 3 2023

Cách hai: Theo bezout ta có: \(\dfrac{2n+15}{n+1}\) \(\in\) Z  ⇔ 2.(-1) + 15 ⋮ n +1

 ⇔ 13 ⋮ n +1 ⇒ n + 1 \(\in\) { -13; -1; 1; 13} ⇒ n \(\in\) { -14; -2; 0; 12}

18 tháng 8 2021

Ta có :

A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3

a. Để A nguyên thì 13/2n+3∈Z

⇒2n+3∈{−13;−1;1;13}

⇒2n∈{−16;−4;−2;10}

⇒n∈{−8;−2;−1;5}

b. Bổ sung điều kiện : A thuộc Z 

Để  A max thì 13/2n+3 min

⇔2n+3 max ∈ Z

Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1

⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)

Vậy A max = 16 <=> n = -2

max là giá trị lớn nhất 

min là giá trị nhỏ nhất

HT

NM
18 tháng 8 2021

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)

NM
19 tháng 8 2021

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)