\(\frac{n-2}{n-1}\)là số nguyên.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2021

Để \(\frac{3n+7}{3n-1}\inℕ^∗\)thì \(3n+7⋮3n-1\)

\(\Leftrightarrow3n-1+8⋮3n-1\Leftrightarrow8⋮3n-1\)

\(\Rightarrow3n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

3n - 11-12-24-48-8
3n203-15-39-7
n2/3 ktm1-1/3 ktm5/3 ktm-13-7/3 ktm 
25 tháng 4 2021

Cảm ơn✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓ nhé! Love you

17 tháng 5 2019

Để A là số nguyên

 \(\Leftrightarrow n+1⋮n-2\)

\(\Leftrightarrow n-2+3⋮n-2\)

mà \(n-2⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

tự tìm n 

17 tháng 5 2019

\(A=\frac{n+1}{n-2}=\frac{\left(n-2\right)+3}{n-2}\)

                         \(=1+\frac{3}{n-2}\)

Để \(A\)là số nguyên thì \(1+\frac{3}{n-2}\in Z\)hay \(\frac{3}{n-2}\in Z\Rightarrow3⋮n-2\)

\(\Leftrightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\Rightarrow n\in\left\{-1;1;3;5\right\}.\)

26 tháng 3 2015

a.\(\frac{3.\left(n-12\right)+42}{3n-12}=3+\frac{42}{3n-12}\)

Vì 3 là số nguyên => \(\frac{42}{3n-12}\)cũng là số nguyên

=> 3n-12 là ước của 42 mà Ư(42)=1;2;3;6;7;42;-1;-2;-3;-6;-7;-42

Vì n là số nguyên

=> \(n\in\)( 5;6;18;3;2;-10)

b. \(\frac{3\left(n+7\right)-16}{n+7}=3-\frac{16}{n+7}\)

Vì 3 là số nguyên => \(\frac{16}{n+7}\)cũng là số nguyên 

=> n+7 là ước của 16 mà Ư(16)=1;2;4;16;-1;-2;-4;-16

=>\(n\in\)(-6;-5;-3;9;-8;-9;-11;-23)

18 tháng 8 2018

a)

Để A thuộc Z thì ( dấu " : " là chia hết cho )

n + 1 : n - 2

n - 2 + 3 : n - 2

=> 3 : n - 2 => n - 2 thuộc Ư(3) = { 1; 3; -1; -3 }

Sau đó tìm n là xong

18 tháng 8 2018

b) Cũng gần tương tự như phần a !

\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)

Để A nhỏ nhất thì \(\frac{3}{n-3}\)nhỏ nhất 

mà n nguyên ( theo đề bài )

=> 3 : n - 3

Ta có bảng :

n - 31-13-3
n4260

Lần lượt thay n vào A thì ta thấy A nhỏ nhất <=> n = 0

6 tháng 5 2018

Sai đề. Tìm x mà lại cho n? Mình sửa lại là tìm n nhé

Để \(\frac{n-8}{n+3}\)là một số nguyên, \(n-8\)phải chia hết cho \(n+3\)

\(\Rightarrow n-8⋮n+3\)

\(\Rightarrow n-8-n+3⋮n+3\)

\(\Rightarrow11⋮n+3\Rightarrow n+3\inƯ\left(11\right)\)

\(Ư\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(+n+3=1\Rightarrow n=1-3=-2\)

\(+n+3=-1\Rightarrow n=\left(-1\right)-3=-4\)

\(+n+3=11\Rightarrow n=11-3=8\)

\(+n+3=-11\Rightarrow n=-11-3=-14\)

\(\Rightarrow n\in\left\{-2;-4;8;-14\right\}\)

6 tháng 5 2018

\(Để\frac{n-8}{n+3}\in Z\)

\(\Rightarrow n-8⋮n+3\)

\(\Rightarrow n+3-11⋮n+3\)

Do \(n+3⋮n+3\Rightarrow11⋮n+3\)

\(\Rightarrow n+3\in\left(1;-1;11;-11\right)\)

\(\Rightarrow n\in\left(-2;-4;8;-14\right)\)

1 tháng 5 2020

1) \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{1}{a}-\frac{1}{a+1}=\frac{1}{a}\)

Vậy: \(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)

\(\frac{1}{5}=\frac{1}{6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{7.6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{42}+\frac{1}{30}\)

2) \(A=\frac{n+3}{n-2}=1+\frac{5}{n-2}\)

A nhận giá trị nguyên <=> \(\frac{5}{n-2}\) nhận giá trị nguyên 

<=> \(n-2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

<=> \(n=\left\{-3;1;3;7\right\}\)

1 tháng 5 2020

Mình học dốt nên chỉ làm được bài 2 thôi :)

\(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)

Để A nhận giá trị nguyên => \(\frac{5}{n-2}\)nhận giá trị nguyên

=> \(5⋮n-2\)

=> \(n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n-21-15-5
n317-3
5 tháng 4 2019

A nguyen suy ra 2n+3 chia het cho n-2 

suy ra 2n-4+7 chia het cho n-2 suy ra 2[n-2] +7 chia het cho n-2 suy ra 7 chia het cho n-2

n thuoc tap hop [3 ,1 ,9,-5]

hoc tot

22 tháng 4 2015

Để A \(\in\) Z thì n + 5 chia hết cho n - 2 

=> (n - 2) + 7 chia hết cho n - 2

Mà n - 2 chia hết cho n - 2

=> 7 chia hết cho n - 2

=> n - 2 \(\in\) Ư(7) = {-1; -7; 1; 7}

Ta có bảng sau: 

n - 2-11-77
n13-59

Vậy n \(\in\) {1; 3; -5; 9}