Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 ( x - 7 ) ( x + 3 ) < 0
\(\Rightarrow\hept{\begin{cases}x-7< 0\\x+3>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-7>0\\x+3< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 7\\x>-3\end{cases}}\) hoăc \(\hept{\begin{cases}x>7\\x< -3\end{cases}}\) ( vô lí )
\(\Rightarrow\) - 3 < x < 7
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Vậy \(x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Bài 2 n - 1 là bội của n + 5 và n + 5 là bội của n - 1
Là 2 bài riêng biệt ak ????
Bài 3 : Tìm a,b. thuộc Z biết ab = 24 ; a + b = -10 ~~~~~ Lát nghĩ
Bài 4 : Tìm các cặp số nguyên có tổng bằng tích ~~~~~ tối lm
a) Ta có: n + 7 \(\in\)Ư(n + 8)
<=> n + 8 \(⋮\)n + 7
<=> (n + 7) + 1 \(⋮\)n + 7
<=> 1 \(⋮\)n + 7
<=> n + 7 \(\in\)Ư(1) = {1; -1}
Lập bảng:
n + 7 | 1 | -1 |
n | -6 | -8 |
Vậy ...
b) Ta có: 2n - 9 = 2(n - 5) + 1
Do n - 5 \(⋮\)n - 5 => 2(n - 5) \(⋮\)n - 5
Để 2n - 9 \(⋮\)n - 5 => 1 \(⋮\)n - 5 => n - 5 \(\in\)Ư(1) = {1; -1}
Lập bảng: tương tự
c) Ta có: n2 - n - 1 = n(n - 1) - 1
Do n - 1 \(⋮\)n - 1 => n(n - 1) \(⋮\)n - 1
Để n2 - n - 1 \(⋮\)n - 1 thì 1 \(⋮\)n - 1 => n - 1 \(\in\)Ư(1) = {1; -1}
Lập bảng: tương tự
d) Ta có: n2 + 5 = n(n + 1) - (n + 1) + 6 = (n - 1)(n + 1) + 6
Tương tự
Lời giải:
a.
\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)
\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)
b.
\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 10B\Rightarrow A< B$
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
\(a,\\ =>n-3\inƯ\left(-7\right)\\ Ư\left(-7\right)=\left\{1;-1;7;-7\right\}\\ =>\left\{{}\begin{matrix}n-3=1\\n-3=-1\\n-3=7\\n-3=-7\end{matrix}\right.\\ =>\left\{{}\begin{matrix}n=4\\n=2\\n=10\\n=-4\end{matrix}\right.\)
\(b,\dfrac{n-5}{n+1}=1-\dfrac{6}{n+1}\\ =>n+1\inƯ\left(6\right)\\ Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\\ =>\left\{{}\begin{matrix}\left\{{}\begin{matrix}n+1=1\\n+1=-1\\n+1=2\\n+1=-2\end{matrix}\right.\\\left\{{}\begin{matrix}n+1=3\\n+1=-3\\n+1=6\\n+1=-6\end{matrix}\right.\end{matrix}\right.=>\left\{{}\begin{matrix}\left\{{}\begin{matrix}n=0\\n=-2\\n=1\\n=-3\end{matrix}\right.\\\left\{{}\begin{matrix}n=2\\n=-4\\n=5\\n=-7\end{matrix}\right.\end{matrix}\right.\)