Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
d, \(x^2+2xy+y^2-2x-2y+1\)
\(\Rightarrow x^2+y^2=1+2xy-2y-2x\)
\(\Rightarrow\left(x+y-1\right)^2\)
Bài 2:
a, \(\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x+1\right)^2=x^2+5x+2x+10\)
\(\Leftrightarrow x^2+2x+1=x^2=5x+2x+10\)
\(\Leftrightarrow-5x=9\)
\(\Leftrightarrow x=-\frac{9}{5}\)
b,\(\left(x+3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\)
c, \(4x^2-9=0\)
\(\Leftrightarrow4x^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\\frac{3}{2}\end{matrix}\right.\)
d,\(\left(4x-5\right)^2-\left(3x-4\right)^2=0\)
\(\Leftrightarrow16x^2-40x+25-\left(9x^2-24x+16\right)=0\)
\(\Leftrightarrow16x^2-40x+25-9x^2+24x-16=0\)
\(\Leftrightarrow7x^2-16x+9=0\)
\(\Leftrightarrow x=\frac{-\left(-16\right)\pm\sqrt{\left(-16\right)^2-4.7.9}}{14}\)
\(\Leftrightarrow x=\frac{16\pm\sqrt{256-252}}{14}\)
\(\Leftrightarrow x=\frac{16\pm\sqrt{4}}{14}\)
\(\Leftrightarrow x=\frac{16\pm2}{14}\)
\(\Leftrightarrow x=\left[{}\begin{matrix}\frac{16+2}{14}\\\frac{16-2}{14}\end{matrix}\right.\)
\(\Leftrightarrow x=\left[{}\begin{matrix}\frac{9}{7}\\1\end{matrix}\right.\)
1.a)\(3x-3y+x^2-2xy+y^2\)
\(=3\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3+x-y\right)\)
d)\(x^2+2xy+y^2-2x-2y+1\)
\(=\left(x+y\right)^2-2\left(x+y\right)+1\)
\(=\left(x+y+1\right)^2\)
2.a)\(\left(x+1\right)\left(x+1\right)=\left(x+2\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x+1\right)^2=x^2+5x+2x+10\)
\(\Leftrightarrow x^2+2x+1-x^2-7x-10=0\)
\(\Leftrightarrow-5x-9=0\)
\(\Leftrightarrow-5x=9\)
\(\Leftrightarrow x=-\frac{9}{5}\). Vậy \(S=\left\{-\frac{9}{5}\right\}\)
b)\(\left(x+3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\).Vậy \(S=\left\{-3;-5\right\}\)
c)\(4x^2-9=0\)
\(\Leftrightarrow\left(2x+3\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{3}{2}\end{matrix}\right.\). Vậy \(S=\left\{\pm\frac{3}{2}\right\}\)
d)\(\left(4x-5\right)^2-\left(3x-4\right)^2=0\)
\(\Leftrightarrow\left(4x-5+3x-4\right)\left(4x-5-3x+4\right)=0\)
\(\Leftrightarrow\left(7x-9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-9=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{9}{7}\\x=1\end{matrix}\right.\). Vậy \(S=\left\{1;\frac{9}{7}\right\}\)
3.Ta có:
Để \(A\left(x\right)⋮B\left(x\right)\) thì: \(m+21⋮2x-3\)
\(\Rightarrow m+21=0\)
\(\Rightarrow m=-21\)
Vậy...!
\(a,A=\left\{0;1;2;3;4\right\}\\ b,B=\left\{-16;-13;-10;-7;-4;-1;2;5;8\right\}\\ c,C=\left\{-9;-8;-7;...;7;8;9\right\}\\ d,x^2-3x+1=0\\ \Delta=9-4=5\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3-\sqrt{5}}{2}\\x=\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\\ \Leftrightarrow D=\left\{\dfrac{3-\sqrt{5}}{2};\dfrac{3+\sqrt{5}}{2}\right\}\)
\(e,2x^3-5x^2+2x=0\\ \Leftrightarrow x\left(x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=\dfrac{1}{2}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow E=\left\{0;2\right\}\\ f,F=\left\{0;3;6;9;12;15;18\right\}\)
bài 2)
theo đề ta có : \(\frac{2x+5}{x+2}=2+\frac{1}{x+2}\)
để 2x+5 chia hết x+2 thì :x+2 là Ư(1)={1;-1}
Xét TH:
x+2=1=>x=-1(loại)
x+2=-1=> x=-3 (loại)
vậy k có giá trị x nào là só tự nhiên để thỏa đề bài
a: \(\Leftrightarrow x-2\in\left\{1;-1;19;-19\right\}\)
hay \(x\in\left\{3;1;21;-17\right\}\)
b: \(\Leftrightarrow2x+3\in\left\{1;-1;3;-3\right\}\)(vì x là số nguyên nên 2x+3 là số lẻ)
hay \(x\in\left\{-1;-2;0;-3\right\}\)
c: \(\Leftrightarrow x+1+4⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{0;-2;1;-3;3;-5\right\}\)
d: \(\Leftrightarrow x+1⋮x+4\)
\(\Leftrightarrow x+4\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{-3;-5;-1;-7\right\}\)
a: =>25-4x=1
=>4x=24
hay x=6
b: =>2x-4=0
hay x=2
c: =>x-35=115
hay x=150
d: =>x-2=12
hay x=14
e: =>x-36=216
hay x=252
â/ \(-55⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(-55\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=55\\x-2=-1\\x-2=-55\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=57\\x=1\\x=-53\end{matrix}\right.\)
Vậy ...........
b/ \(x^2+2x-7⋮x+2\)
Mà \(x+2⋮x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-7⋮x+2\\x^2+2x⋮x+2\end{matrix}\right.\)
\(\Leftrightarrow-7⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(-7\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=1\\x+2=-7\\x+2=-1\\x+2=7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\\x=-3\\x=5\end{matrix}\right.\)
Vậy .........
c/ \(\left(x-15\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-15=0\\x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-4\end{matrix}\right.\)
Vậy .........
d/ \(\left|3x-4\right|-12=13\)
\(\Leftrightarrow\left|3x-4\right|=25\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-4=25\\3x-4=-25\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{29}{3}\\x=-7\end{matrix}\right.\)
Vậy ..