Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=n^4+n^3+1
với n=1=>A=3=>loại
với n\(\ge\)2 ta có: (2n2+n−1)2< 4A ≤(2n2+n) => 4A = ( 2n2+ n )2 => n = 2 ( thỏa mãn )
Đặt \(n^2+n+6=m^2\left(m\in N\right)\Rightarrow4n^2+4n+24=4m^2\)
\(\Rightarrow\left(4n^2+1\right)^2+24=4m^2\Leftrightarrow4m^2-\left(4n^2+1\right)^2=24\)
\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=24\)
Xét thấy 2m+2n+1>2m-2n-1>0 và chúng là những số lẻ , nên ta có thể viết
\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=1.24=2.12=6.4=3.8\)
Suy ra n có thể có giá trị sau:2:
Đặt \(n^2+n+6=m^2\left(m\in N\right)\Rightarrow4n^2+4n+24=4m^2\)
\(\Rightarrow\left(2n\right)^2+2.2.n+1+23=4m^2\Leftrightarrow\left(4n^2+1\right)^2+23=4m^2\)
\(4m^2-\left(4n^2+1\right)^2=23\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=23\)
Xét thấy 2m+2n+1>2m-2n-1>0 và chúng là những số lẻ nên ta có thể viết
\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=1.23\)
Suy ra n có thể có giá trị là 5
Đặt A=n2+n+6=k2A=n2+n+6=k2 (kk thuộc NN)
\(\Rightarrow\)4n2+4n+24=4k2→4n2+4n+24=4k2
\(\Rightarrow\)(2n+1)2−4k2=−23→(2n+1)2−4k2=−23
\(\Rightarrow\)(2n+1−4k)(2n+1+4k)=−23→(2n+1−4k)(2n+1+4k)=−23
Đến đây là PT ước số.Tự giải tiếp nhé
Để \(n^2+n+1589\) là số chính phương thì \(n^2+n+1589=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4n^2+4n+6356=4a^2\)
\(\Leftrightarrow\left(4n^2+4n+1\right)+5355=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n+1\right)^2-\left(2a\right)^2=-5355\)
\(\)\(\Leftrightarrow\left(2n-2a+1\right)\left(2n+2a+1\right)=-5355\)
Từ đây xét 2n - 2a + 1 ; 2n + 2a + 1 là các ước của - 5355 là ra
\(n^2+n+1589\)
\(n^2+n+1589=m^2\)
\(\Rightarrow\left(4n^2+1\right)^2+6355=4m^2\)
\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\)
\(2m+2n+1>2m-2n-1>0\)
Ta viết:\(\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\cdot1=1271\cdot5=205\cdot31=155\cdot414\)
\(\Rightarrow n=\text{ 1588,316,43,28}\)
Ban tham khao nk :
x^2+2x+200 = k^2 (với k thuộc N)
k^2-(x^2+2x+1) =199
k^2-(x+1)^2 =199
(k-x-1)(k+x+1)=199 [áp dụng hằng đẳng thức a^2-b^2=(a+b)(a-b)
Vì 199 là số nguyên tố, và x là số tự nhiên suy ra:
{k-x-1=1......(1)
{k+x+1=199....(2)
Từ (1) và (2) ta đựoc: [lấy 2 trừ 1]
x =98
\(a=n^2\left(n^4-n^2+2n+2\right)\)
A=\(n^2\left(n+1\right)\left(n^3-n^2+2\right)\)
A=\(n^2\left(n+1\right)\left(n^3+1-n^2+1\right)\)
A=\(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
A=\(n^2\left(n+1\right)^2\left(n-1\right)+n^2\left(n+1\right)^2\)
nhận thấy n^2 -2n+2=\(\left(n-1\right)^2+1>\left(n-1\right)^2\)(1) (vì n>1)
vì n>1 => 2n>2
=>2n-2>0
=>\(n^2-\left(2n-2\right)< n^2\)
hay \(n^2-2n+2< n^2\)(2)
từ (1) và (2) =>\(\left(n-1\right)^2< n^2-2n+2< n^2\)
=>\(n^2-2n+2\)không là số chính phương
=> A= \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) không là số chính phương
mình làm tắt chỗ nào không hiểu hỏi mình trả lời cho