Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé
a) \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)
Để \(\frac{3n-2}{n-3}\)nguyên thì \(\frac{7}{n-3}\)nguyên
hay \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng sau:
\(n-3\) \(-7\) \(-1\) \(1\) \(7\)
\(n\) \(-4\) \(2\) \(4\) \(10\)
Vậy....
\(\frac{2n+8}{3n+1}=\frac{3.\left(2n+8\right)}{2.\left(3n+1\right)}=\frac{6n+24}{6n+2}=\frac{6n+2+22}{6n+2}=1+\frac{22}{6n+2}\)
\(n\inℕ\Rightarrow22⋮\left(6n+2\right)\Leftrightarrow6n+2\inƯ\left(22\right)=\left\{1;2;11;22\right\}\)
Nêu 6n+2=1 thì n = -1/6 (loại)
Nếu 6n+2 = 2 thì n = 0
Nếu 6n+2=11 thì n = 3/2 (loại)
Nếu 6n+2=22 thì n = 10/3
Vậy n = 0
#)Giải :
Đặt \(A=\frac{1}{45}+\frac{1}{55}+\frac{1}{66}+...+\frac{2}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{9}-\frac{1}{x+1}=\frac{1}{9}\)
Đến đây thì ez rùi nhé ^^
a, \(B=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\in Z\)
<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)
b, \(C=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\in Z\)
<=> \(n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{3;1;7;-3\right\}\)
c, \(D=\frac{-3\left(n+1\right)+5}{n+1}=-3+\frac{5}{n+1}\in Z\)
<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)
Để phân số này thuộc N nốt hả ?
Để biểu thức là STN
\(\Rightarrow n^2+3n⋮n-1\)
\(\Rightarrow n^2-n+4n⋮n-1\)
\(\Rightarrow n.\left(n-1\right)+4n⋮n-1\)
Mà \(n.\left(n-1\right)⋮n-1\)
\(\Rightarrow4n⋮n-1\)
\(\Rightarrow4n-4+4⋮n-1\)
\(\Rightarrow4.\left(n-1\right)+4⋮n-1\)
Mà \(4.\left(n-1\right)⋮n-1\)
\(\Rightarrow4⋮n-1\)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(\Leftrightarrow n\in\left\{2;3;5\right\}\)