Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy nếu mẫu số đầu và mẫu số của kết quả là 2 thì mẫu số sau cũng là 2
=> n = 2
Ta có
\(\frac{m}{2}-\frac{2}{2}=\frac{1}{2}\)
\(\frac{m}{2}=\frac{2}{2}+\frac{1}{2}=\frac{3}{2}\)
\(\Rightarrow m=3;n=2\)
5/2 -2/1=1/2 với m=5;n=1
3/2-2/2=1/2 với m=3;n=2
-3/2-2/-1=1/2 với m=-3;n=-1
-1/2-2/-2 =1/2 với m=-1;n=-2
Ta đặt:A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...\frac{1}{n^2}\)
Vì \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
....
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
=> A < \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{\left(n-1\right)n}\)
=> A < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
=> A < \(1-\frac{1}{n}< 1\)(ĐPCM )
Vậy A < 1
\(\frac{n+5}{n}=1+\frac{5}{n}\)
=> n thuộc Ư(5) = { -5 ; -1 ; 1 ; 5 }
\(\frac{n-2}{4}\)=> n - 2 thuộc B(4) = { 0 ; 4 ; 8 ; 12 ; 16 ; ... }
=> n thuộc { 2 ; 6 ; 10 ; 14 ; 18 ; ... }
\(\frac{n+5}{n+2}=\frac{n+2+3}{n+2}=1+\frac{3}{n+2}\)
=> n + 2 thuộc Ư(3) = { -3 ; -1 ; 1 ; 3 }
=> n thuộc { -5 ; -3 ; -1 ; 1 }
a). \(\frac{n-2}{4}\Rightarrow n-2\in B\left(4\right)=\left\{0;4;8;12;...\right\}\)
n-2=0 => n=2 (nhận)
n-2=4=> n=6 (nhận)
n-2=8=>n=10 (nhận)
.....
Vậy n\(\in\)\(\left\{2;6;10;...\right\}\)
b. \(\frac{6}{n-1}\Rightarrow n-1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
n-1=1=> n=2(nhận)
n-1=-1=>n=0 (nhận)
n-1=2 => n=3 (nhận)
n-1=-2 => n=-1 (loại)
n-1=3 => n=4 (nhận)
n-1=-3 => n=-2 (loại)
n-1=6 => n=7 (nhận)
n-1=-6 => n=-5 (loại)
Vậy n=2;0;3;4;7
c. \(\frac{n}{n-2}=\frac{n-2+2}{n-2}=\frac{n-2}{n-2}+\frac{2}{n-2}=1+\frac{2}{n-2}\Rightarrow n-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
n-2=1 => n=3 (nhận)
n-2=-1 => n=1 (nhận)
n-2=2 => n=4 (nhận)
n-2=-2 => n=0 (nhận)
Vậy n=3;1;4;0
\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{...1}{\left(n-1\right).n}\right)\)
\(N< \frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(N< \frac{1}{4}.\left(1-\frac{1}{n}\right)< \frac{1}{4}.1=\frac{1}{4}\)
=> \(N< \frac{1}{4}\)(đpcm)
Ta có: A = \(\frac{3n+2}{n-5}=\frac{3\left(n-5\right)+17}{n-5}=3+\frac{17}{n-5}\)
Để A thuộc Z thì 17 \(⋮\)n - 5 => n - 5 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng :
n - 5 | 1 | -1 | 17 | -17 |
n | 6 | 4 | 22 | -12 |
Vậy n thuộc {6;4;22;-12} thì A thuộc Z
A=(3n-15)+17/n-5
A=3+ 17/n-5
A thuoc Z thi 3 + 17/n-5 thuoc Z -->17/n-5 thuoc Z
-->n-5 thuoc Ư(17)
\(\frac{n-2}{n+2}-\frac{n-1}{n+2}+\frac{-4}{n+2}=\frac{n-2-n-1+\left(-4\right)}{n+2}=\frac{\left(n-n\right)-2-1+\left(-4\right)}{n+2}=\frac{-7}{n+2}\)
\(\Rightarrow n+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)