K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

\(a,\left(n+10\right)\left(n+15\right)\)

Với n lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)

\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2k+11\right)\left(2k+16\right)=2\left(k+8\right)\left(2k+11\right)⋮2\)

Với n chẵn \(\Rightarrow n=2q\left(q\in N\right)\)

\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2q+10\right)\left(2q+15\right)=2\left(q+5\right)\left(2q+15\right)⋮2\)

Suy ra đpcm

\(b,\) Với n chẵn \(\Rightarrow n=2k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)

Với n lẻ \(\Rightarrow n=2q+1\Rightarrow n+1=2q+2=2\left(q+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮2\)

Với \(n=3k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Với \(n=3k+1\Rightarrow2n+1=6k+3=3\left(2k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Với \(n=3k+2\Rightarrow n+1=3\left(k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮3\)

Suy ra đpcm

 

15 tháng 8

a; (n + 10)(n + 15)

+ Nếu n là số chẵn ta có: n + 10 ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2

+ Nếu n là số lẻ ta có: n + 15 là số chẵn 

⇒ (n + 15) ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2 

Từ những lập luận trên ta có:

A = (n + 10)(n + 15) ⋮ 2 ∀ n \(\in\) N

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

7 tháng 12 2019

a/

+ Nếu n chẵn (n+10) chẵn => n+10 chia hết cho 2 => (n+10)(n+15) chia hết cho 2

+ Nếu n lẻ thì (n+15) chẵn => n+15 chia hết cho 2 => (n+10)(n+15) chia hết cho 2

b/ 

n(n+1)(2n+1) chi hết cho 6 khi đồng thời chia hết cho 2 và cho 3

+ Nếu n chẵn => n(n+1)(2n+1) chia hết cho 2

+ Nếu n lẻ => n+1 chẵn => n+1 chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2

=> n(n+1)(2n+1) chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 => n+2 chia hết cho 3 => 2(n+2)=2n+4=2n+1+3 chia hết cho 3 mà 3 chia hết cho 3 => 2n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

=> n(n+1)(2n+1) chia hết cho 3 với mọi n

=> n(n+1)(2n+1) chia hết cho 6 vơi mọi n

c/

n(2n+1)(7n+1) chia hết cho 6 khi đồng thời chia hết cho 2 và cho 3

+ Nếu n chẵn => n chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2

+ Nếu n lẻ => 7n lẻ => 7n+1 chẵn => 7n+1 chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2

=> n(2n+1)(7n+1) chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => 10(n+1)=10n+10=(7n+1)+(3n+9)=(7n+1)+3(n+3) chia hết cho 3

Mà 3(n+3) chia hết cho 3 => 7n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 chứng minh tương tự câu (b) => 2n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

=> n(2n+1)(7n+1) chia hết cho 3 với mọi n

=> n(2n1)(7n+1) chia hết cho 6 với mọi n

8 tháng 10 2017

trả lời giùm tớ ,tớ đang làm bài này

8 tháng 10 2017

Cậu làm xong chưa? Trả lời hộ tớ

19 tháng 10 2015

mình biết câu a

a=[n+10].[n+15]chia hết cho 2

khi n là số chẵn thì n +10 sẽ chia hết cho 2

khi n là số lẻ thì 15+n sẽ chia hết cho 2

nên a chia hết cho 2

19 tháng 10 2015

a)nếu n=2k(kEN)

thì (n+10)(n+15)=(2k+10)(2k+15)=2k(2k+15)+10(2k+15)=4k^2+30k+20k+150=4k^2+50k+150 chia hết cho 2

nếu n=2k+1(kEN)

thì (n+10)(n+15)=(2k+1+10)(2k+1+15)=(2k+11)(2k+16)=2k(2k+16)+11(2k+16)=4k^2+32k+22k+176=4k^2+54k+176 chia hết cho 2

Vậy với mọi nEN thì A=(n+10)(n+15) chia hết cho 2

b)(4n-5) chia hết cho 2n-1

4n-2-3 chia hết cho 2n-1

2(2n-1)-3 chia hết cho 2n-1

=>3 chia hết cho 2n-1 hay 2n-1 E Ư(3)={1;3}

=>2nE{2;4}

=>n E{1;2}

Vậy để 4n-5 chia hết cho 2n-1 thì nE{1;2}

1 tháng 11 2017

1.=> n+7-(n+2) chia hết cho n+2

=>n+7-n-2 chia hết cho n+2

=>5 chia hết cho n+2

=>n+2 thuộc Ư(5)=1;5

ta có bảng:

n+215
nloại 3   

Vậy n=3

MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ

4 tháng 11 2017

3.3n+15 chia hết cho n+1

=>3n+15-n+1 chia hết cho n+1

=>3n+15-3(n+1) chia hết cho n+1 

=>3n+15-3n-3 chia hết cho n+1 

=>12 chia hết cho n+1 

=>n+1 thuộc Ư(12)=1;2;3;4;6;12

ta có bảng:

n+1123412
n0123

11

Vậy n thuộc 0;1;2;3;11

14 tháng 11 2016

đây có phải là Tin học đâu ! VỚ VẨNucche

15 tháng 11 2016

toán chủ đề sai

I'am sorry