Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A.\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)\left(n+1-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b. ap dungtinh B =\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

Tại \(n\in N,n\ge1\) có:
\(\frac{1}{\left(n+3\right)\sqrt{n}+n\sqrt{n+3}}=\frac{1}{\sqrt{n\left(n+3\right)}\left(\sqrt{n+3}+\sqrt{n}\right)}=\frac{\sqrt{n+3}-\sqrt{n}}{\sqrt{n\left(n+3\right)}\left(n+3-n\right)}=\frac{\sqrt{n+3}-\sqrt{n}}{3\sqrt{n\left(n+3\right)}}\)
=\(\frac{1}{3}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+3}}\right)\)
=> \(\frac{1}{\left(n+3\right)\sqrt{n}+n\sqrt{n+3}}=\frac{1}{3}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+3}}\right)\) (1)
Áp dụng (1) vào Q có:
Q=\(\frac{1}{3}\left(1-\frac{1}{\sqrt{4}}\right)+\frac{1}{3}\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{5}}\right)+\frac{1}{3}\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{6}}\right)+...+\frac{1}{3}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+3}}\right)\)=\(\frac{1}{3}\left(1-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{6}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+3}}\right)\)
=\(\frac{1}{3}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{4}}-\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{6}}-..-\frac{1}{\sqrt{n+3}}\right)\)
=\(\frac{1}{3}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{n+1}}-\frac{1}{\sqrt{n+2}}-\frac{1}{\sqrt{n+3}}\right)\)
@Vũ Minh Tuấn @Lê Thị Thục Hiền @Băng Băng 2k6

A.x^2-y^2+2y
b 2x+2y-x^2-xy
c, 3a^2-6ab+3b^2-12
d,x^2 - 25+y^2+2xy
e,^2+2ab+b^2-ac-bc
f, x^2-2x-4y^2-4y
f,x^2y-x^3-9y+9x
h,x^2(x-1)+16(1-x)
n81x^2-4
m,xz-yz-x^2+2xy-y^2
p,x^2+8x+15
k,x^2-x-12
bài 5 tìm x biết
a 2x(x-5)-x(3+2x)=26
b, 5x(x-1)=x-1
c,2(x+
d, (2x-3)^2-(x+5)^5=0
e,3x^2-48x=0
f, x^3+c
bài 6 chứng minh rằng biểu thức
A= x (x-6) +10 luôn dương với mọi x,y.
B=x^2-2x+9y^2-6y+3 luôn dươn với mọi x,y.
bài 7: tìm giá trị nhỏ nhất của biểu thức a,b,c và giá trị lớn nhất của biểu thức D,E.
A = x^2 - 4x +1
B=3x^2+4x+11
C = (x-1)(x+3)(x+2)(x+6)
D= 55-8x-x^2
E= 4x-x^2 +1
Bài9: cho phân thức sau :
____

1, \(x^3=\left(7+\sqrt{\frac{49}{8}}\right)+\left(7-\sqrt{\frac{49}{8}}\right)+3x\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}\)
\(=14+3x\cdot\frac{7}{2}=14+\frac{21x}{2}\)
\(\Leftrightarrow x^3-\frac{21}{2}x-14=0\)
Ta có: \(f\left(x\right)=\left(2x^3-21-29\right)^{2019}=\left[2\left(x^3-\frac{21}{2}x-14\right)-1\right]^{2019}=\left(-1\right)^{2019}=-1\)
2, ta có: \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (bạn tự cm)
Áp dụng công thức trên ta được n=2016
3, \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\frac{\sqrt[3]{\left(\sqrt{5}\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}\)
\(=\frac{\sqrt[3]{\left(\sqrt{5}-2\right)^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{5-4}{3}=\frac{1}{3}\)
Thay x=1/3 vào A ta được;
\(A=3x^3+8x^2+2=3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2=3\)

b/ \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\)
\(=\sqrt{n+1}-1\)
Câu a quy đồng từ từ từ phải qua trái là ra

Ta có:\(\sqrt[k+1]{\frac{k+1}{k}}>1\)với \(k=1;2;3;4;....;n\)
Áp dụng BĐT AM-GM cho \(k+1\)số,ta có:
\(\sqrt[k+1]{\frac{k+1}{k}}=\sqrt[k+1]{\frac{1\cdot1\cdot1\cdot...\cdot1}{k}\cdot\frac{k+1}{k}}\le\frac{1+1+1+....+1+\frac{k+1}{k}}{k+1}=\frac{k}{k+1}+\frac{1}{k}\)
\(=1+\frac{1}{k\left(k+1\right)}\)
\(\Rightarrow1< \sqrt[k+1]{\frac{k+1}{k}}\le1+\left(\frac{1}{k}-\frac{1}{k+1}\right)\)
Lần lượt cho \(k=1;2;3;4;.....n\)rồi cộng lại,ta được:
\(n< \sqrt{2}+\sqrt[3]{\frac{3}{2}}+\sqrt[4]{\frac{4}{3}}+\sqrt[5]{\frac{5}{4}}+....+\sqrt[n+1]{\frac{n+1}{n}}\le n+1\)
\(\Rightarrow\left[a\right]=n\)
Làm lại:))
Ta có:\(\sqrt[k+1]{\frac{k+1}{k}}>1\)với \(k=1;2;3;4...;n\)
Áp dụng BĐT AM-GM cho \(k+1\) số,ta có:
\(1+1+1+...+1+\frac{k+1}{k}\ge\left(k+1\right)\sqrt[k+1]{1\cdot1\cdot1\cdot...\cdot1\cdot\frac{k+1}{k}}=\sqrt[k+1]{\frac{k+1}{k}}\)
\(\Rightarrow\frac{1+1+1+...+1+\frac{k+1}{k}}{k+1}\ge\sqrt[k+1]{1\cdot1\cdot1\cdot....\cdot1\cdot\frac{k+1}{k}}\)
Mà \(\frac{1+1+....1+\frac{k+1}{k}}{k+1}=\frac{1+1+1+....+1}{k+1}+\frac{\frac{k+1}{k}}{k+1}=\frac{k}{k+1}+\frac{1}{k}=1+\frac{1}{k\left(k+1\right)}\)
\(\Rightarrow1< \sqrt[k+1]{\frac{k+1}{k}}\le1+\left(\frac{1}{k}-\frac{1}{k+1}\right)\)
Lần lượt thay \(k=1;2;3;....;n\)rồi cộng lại,ta được:
\(n< \sqrt{2}+\sqrt[3]{\frac{3}{2}}+\sqrt[4]{\frac{4}{3}}+\sqrt[4]{\frac{5}{4}}+...+\sqrt[n+1]{\frac{n+1}{n}}\le n+1\)
\(\Rightarrow\left[a\right]=n\)
\(\frac{1}{\sqrt{4}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}=10\)
\(\frac{\sqrt{4}-\sqrt{5}}{\left(\sqrt{4}+\sqrt{5}\right)\left(\sqrt{4}-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{6}}{\left(\sqrt{5}+\sqrt{6}\right)\left(\sqrt{5}-\sqrt{6}\right)}+...+\frac{\sqrt{n}-\sqrt{n+1}}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=10\)
\(\frac{\sqrt{4}-\sqrt{5}}{4-5}+\frac{\sqrt{5}-\sqrt{6}}{5-6}+...+\frac{\sqrt{n}-\sqrt{n+1}}{n-\left(n+1\right)}=10\)
\(\frac{\sqrt{4}-\sqrt{5}}{-1}+\frac{\sqrt{5}-\sqrt{6}}{-1}+...+\frac{\sqrt{n}-\sqrt{n+1}}{-1}=10\)
\(\frac{\sqrt{4}-\sqrt{n+1}}{-1}=10\)
\(2-\sqrt{n+1}=-10\)
\(\sqrt{n+1}=12\)
\(\Rightarrow n+1=144\Rightarrow n=143\)