Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 8n+5 chia hết cho 6n-1
=>3.(8n+5) chia hết cho 6n-1( mình tìm BCNN(8,6)=24 rồi tính nhé)
Ta có: 6n-1 chia hết cho 6n-1
=> 4.(6n-1) chia hết cho 6n-1
=>3.(8n+5)-4.(6n-1) chia hết cho 6n-1
(24n+15)-(24n-4) chia hết cho 6n -1
11 chia hết cho 6n+1
=>6n-1 thuộc {1;11}
Mà n thuộc N => 6n-1 = 11
6n = 12
=>n=2
Vậy n=2
b) Tương tự vậy nha bạn. ( n-5)2 chia hết cho n-5
Các bước còn lại tương tự n= 6
c) cũng tương tự như vậy. Ta có kết quả n=1
a, Ta có 8n - 59 = ( 2n -16 ) + ( 2n -16 ) + ( 2n - 16 ) + ( 2n - 16 ) + 5
2n - 16 luôn luôn chia hết cho 2n - 16
=> 4.(2n-16) chia hết cho 2n-16 <=> 5 chia hết cho 2n - 16
=> 2n - 16 thuộc Ư(5) = { 1;-1;5;-5 }
Tự làm nốt
b, tương tự
c, 6n - 46 = (2n-18) + (2n-18) + (2n-18) + 8
... Tiếp tục :))
a ,\(8n-59⋮2n-16\)
Mà \(2n-16⋮2n-16\)
\(\Rightarrow4\left(2n-16\right)⋮2n-16\)
\(\Rightarrow8n-64⋮2n-16\)
\(\Rightarrow\left(8n-59\right)-\left(8n-64\right)⋮2n-16\)
\(\Rightarrow8n-59-8n+64⋮2n-16\)
\(\Rightarrow5⋮2n-16\)
\(\Rightarrow2n-16\inƯ\left(5\right)\)
\(\Rightarrow2n-16\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow2n\in\left\{17;15;21;11\right\}\)
\(\Rightarrow\) KHÔNG CÓ SỐ NÀO THỎA MÃN CỦA 2n
\(\Rightarrow x\in\varnothing\)
a)(5n+7)(4n+6)
nếu n=2k =>(5.2k+7)(4.2k+6)=(10k+7)(8k+6)
Vì 8k+6 chia hết cho 2 nên (10k+7)(8k+6) chia hết cho 2 (1)
nếu n=2k+1 =>[5.(2k+1)+7].[4.(2k+1)+6]=(10k+5+7).(8k+4+6)=(10k+12).(8k+10) chia hết cho 2 (2)
Từ (1) (2) =>(5n+7).(4n+6) luôn chia hết cho 2
=>đpcm
a) \(\left(5n+7\right)\left(4n+6\right)\)
\(=\left(5n+7\right)4n+\left(5n+7\right)6\)
\(=20n^2+28n+30n+32\)
\(=20n^2+58n+32\)
Vì \(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)
b) \(\left(8n+1\right)\left(6n+5\right)\)
\(=\left(8n+1\right)6n+\left(8n+1\right)5\)
\(=48n^2+6n+40n+5\)
\(=48n^2+46n+5\)
Vì \(\left(48n^2+46n\right)⋮2\) mà \(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)
c) \(n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n-2\right)\)
\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\) và \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)
a) (5n+7).(4n+6) = 2.(5n+7).(2n+3)
Vậy (5n+7).(4n+6) chia hết cho 2 với n thuộc N
b)(8n+1).(6n+5)
ta có
8n là số chẳn
=>8n+1 là số lẽ
hay 8n+1 không chia hết cho 2
lại có:
6n là số chẵn
=>6n+5 là số lẽ
hay 6n+5 không chia hết cho 2
suy ra (8n+1).(6n+5) không chia hêt cho 2 với n thuộc N
a)Ta có:(5n+7)(4n+6)=2.(5n+7)(2n+3) chia hết cho 2 với mọi n thuộc N(đpcm)
b)Do 8n là số chẵn với mọi n thuộc N=>8n+1 là số lẻ
Tương tự 6n+5 cũng là số lẻ
Mà tích 2 số lẻ là 1 số lẻ
Do tích 2 số lẻ không chia hết cho 2 nên
(8n+1)(6n+5) không chia hết cho 2 với mọi n thuộc N