Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = n^2006 + n^2005 + 1
Với n = 1 thì A là số nguyên tố.
Xét n > 1
A = n^2006 + n^2005 + n^2004 - ( n^2004 - 1)
A = n^2004( n² + n + 1) - [ (n³)668 - 1] (1)
Ta có :
(n³)668 - 1 chia hết cho n³ - 1
n^2004 - 1 chia hết cho n² + n + 1 (2)
Từ (1) và (2) => nếu n> 1 thì A chia hết cho n² + n +1.
Vậy chỉ có n =1 thì A là số nguyên tố
Em tham khảo!
Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath
Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath
Xét n=1 ta có n4+4n=5 thỏa mãn
Xét n>1. Nếu n chẵn thì n4+4n chia hết cho 2 và n4+4n>2 nên n4+4n là hợp số
Nếu n lẻ ta đặt n=2k+1(k thuộc N) ta có:
n4+4n=(n2)2+(4k.2)2=(n2+4k.2)2-2n2+4k.2
=(n2+4k.2)2-(2n.2k)2=(n2-2n.2k+4k.2)(n2+2n.2k+4k.2)
Tích cuối là 1 hợp số
Vậy n=1 thỏa mãn bài toán