Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a chia cho 153 dư 110 => a - 110 chia hết cho 153
a chia cho 117 dư 110 => a - 110 chia hết cho 117
=> a - 110 \(∈\) BC(153; 117)
153 = 32.17 ; 117 = 32.13 => BCNN (153;117) = 32.13.17 = 1989
=> a -110 \(∈\) B(1989) = {0;1989; 3978;5967;...} => a \(∈\) {110;2099;4088; ...}
Mà 2000 < a < 5000 nên a = 2099 hoặc a = 4088
Vậy...
Chúc bạn học tốt
Với n = 0 thì n2005 + 2005n + 2005n = 02005 + 20050 + 2005.0 = 1 + 1 + 0 = 2 không chia hết cho 3, loại.
Với n = 1 thì n2005 + 2005n + 2005n = 12005 + 20051 + 2005.1 = 1 + 2005 + 2005 = 4011 chia hết cho 3.
Với n > 1 thì đều ra trường hợp không chia hết cho 3.
Vậy n = 1
ta xét;
(*)n=0=>n^2005+2005^n+2005n =0^2005+2005^0+2005x0=1+1+0=2 (không chia hết cho 3)
(*)n=1 =>n^2005+2005^n+2005n=1^2005+2005^1+2005x1=1+2005x2=4011(không chia hết cho 3)
(*)n>1 thi2 n^2005+2005^n+2005n sẽ không chia hết cho 3 Hay n=1
a,ta có n+6=(n+2)+4
Để n+6 chia hết cho n+2 thì 4 phải chia hết cho n+2
Suy ra n+2 là ước của 4,là các số 2,4.
Nếu n+2=2 => n=0
Nếu n+2=4 => n=2.
Vậy n=0 và n=2.
b,Ta có 2n+3=2x(n+2) -1
Để 2n+3 chia hết cho n+2 thì 1 phải chia hết cho n+2
Suy ra n+2=1 (Loại do không có n thuộc N thỏa mãn)
Vậy ko có n nào là đáp số.
Viết thế này dễ nhìn nefk (n+2)/(n-1) =(n-1+3)/(n-1)
=1+3/(n-1) vì n+2 chia cho n-1 =1 dư 3/(n-1)
để n+2 chia hết cho n-1 thì 3/(n-1) là số nguyên
3/(n-1) nguyên khi (n-1) là Ước của 3
khi (n-1) ∈ {±1 ; ±3}
xét TH thôi :
n-1=1 =>n=2 (tm)
n-1=-1=>n=0 (tm)
n-1=3=>n=4 (tm)
n-1=-3=>n=-2 (loại) vì n ∈N
Vậy tại n={0;2;4) thì n+2 chia hết cho n-1
--------------------------------------...
b, (2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(...
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên
khi n+1 ∈ Ước của 5
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1
vậy n+1 ∈ {1;5}
Xét TH
n+1=1=>n=0 (tm)
n+1=5>n=4(tm)
Vâyj tại n={0;4) thì 2n+7 chia hêt scho n+1
--------------------------------------...
Chúc bạn học tốt
a/ N + 2 chia hết n - 1
có nghĩa là \(\frac{n+2}{n-1}\) là số nguyên
\(\frac{n+2}{n-1}=1+\frac{3}{n-1}\) muốn nguyên thì n-1 thuộc Ư(3)={-1,-3,1,3}
- n-1=-1=>n=0
- n-1=1=>n=2
- n-1=-3=>n=-2
- n-1=3=>n=4
do n thuộc N => cacsc gtri thỏa là {0,2,4}
b/ 2n + 7 chia hết cho n+1 có nghĩa là : \(\frac{2n+7}{n+1}=2+\frac{5}{n+1}\)
là số nguyên
để nguyên thì n+1 thuộc Ư(5)={1,5,-1,-5}
- n+1=1=>n=0
- n+1=-1=>n=-2
- n+1=5=>n=4
- n+1=-5=>n=-6
do n thuộc N nên : các giá trị n la : {0;4}
Với n = 0 thì n2005 + 2005n + 2005n = 02005 + 20050 + 2005.0 = 1 + 1 + 0 = 2 không chia hết cho 3, loại.
Với n = 1 thì n2005 + 2005n + 2005n = 12005 + 20051 + 2005.1 = 1 + 2005 + 2005 = 4011 chia hết cho 3.
Với n > 1 thì đều ra trường hợp không chia hết cho 3.
Vậy n = 1
vi 2005 chia cho 3 du 1 nen 2005n=3k+1
ta chia 3TH:
TH1:n=3k
=>2005n+n2005+2005n=(3k+1+3k+3k) chia cho 3 du 1(loại)
TH2:n=3k+1
=>2005n+n2005+2005n=3k+1+3k+1+3k+1=3(3k+1)chia het cho 3
TH3:n=3k+2
=>2005n+n2005+2005n=3k+1+3k+2+3k+2=3.3k+5chia cho 3 du 1(loai)
vậy n có dang 3k+1 thi 2005n+n2005+2005n chia het cho 3