Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ktra lại đề
b) \(5x\left(x-y\right)-\left(y-x\right)=\left(x-y\right)\left(5x+1\right)\)
c) \(x\left(x+3\right)+\left(3+x\right)=\left(x+3\right)\left(x+1\right)\)
f) \(4x\left(x-2\right)-\left(2x\right)^2=4x^2-8x-4x^2=-8x\)
g) \(\left(x-2\right)^2-\left(2-x\right)^3=\left(x-2\right)^2+\left(x-2\right)^3=\left(x-2\right)^2\left(x-1\right)\)
Bài 1 :
\(a)\)\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(A=\left(x^2+6x-x-6\right)\left(x^2+3x+2x+6\right)\)
\(A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(A=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x^2+5x\right)^2=0\)\(\Leftrightarrow\)\(x\left(x+5\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy GTNN của \(A\) là \(-36\) khi \(x=0\) hoặc \(x=-5\)
\(b)\)\(B=x^2-4x+y^2-8y+6\)
\(B=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)
\(B=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}}\)
Vậy GTNN của \(B\) là \(-14\) khi \(x=2\) và \(y=4\)
Chúc bạn học tốt ~
Bài 2 :
\(a)\)\(0\le n\le5\)
\(b)\)\(n\ge2\)
\(c)\)\(\hept{\begin{cases}n\ge2\\n+1\ge5\end{cases}\Leftrightarrow\hept{\begin{cases}n\ge2\\n\ge4\end{cases}\Leftrightarrow}n\ge4}\)
\(d)\)\(\hept{\begin{cases}0\le n\le3\\0\le n\le2\\0\le n\le1\end{cases}\Leftrightarrow0\le n\le1}\)
Chúc bạn học tốt ~
bài 1:
a 2x(x-5)-2x^2=20
<=>2x^2-10x-2x^2=20
<=>-10x=20
<=>x=-2
v....
b x^2-2x+1=0
<=>(x-1)^2=0
<=>x-1=0
<=>x=1
v...
bài 3
A=x-x^2+1=-(x^2-x-1)=-(x^2-2*x*1/2+1/4-5/4)=-(x-1/2)^2+5/4<=5/4
dấu bằng xảy ra <=>x=1/2
bài 2 mình ko biết làm sorry cậu
\(\left(x+2\right)\left(x^2+2x-9\right)\)
\(=x^3+2x^2-9x+2x^2+4x-18\)
\(=x^3+4x^2-5x-18\)
\(\left(x^{2y}-6\right)\left(x^2-5\right)\)
\(=x^{4y}-5x^{2y}-6x^2+30\)
\(\left(x+y\right)\left(xy-4+y\right)\)
\(=x^2y-4x+xy+xy^2-4y+y^2\)
câu còn lại tương tự nha
a: \(N=\dfrac{3x^5-4x^4+6x^3}{-2x^2}=-\dfrac{3}{2}x^3+2x^2-3x\)
b: \(N=\dfrac{\left(6x^4y^5-3x^3y^4+\dfrac{1}{2}x^4y^3z\right)}{-\dfrac{1}{3}x^2y^3}=-18x^2y^2+9xy-\dfrac{3}{2}x^2z\)
c: \(\Leftrightarrow N\cdot\left(y-x\right)=\left(x-y\right)^3\)
\(\Leftrightarrow N=\dfrac{\left(x-y\right)^3}{y-x}=-\left(y-x\right)^2\)
d: \(\Leftrightarrow N\cdot\left(y^2-x^2\right)=\left(y^2-x^2\right)^2\)
hay \(N=y^2-x^2\)
a, x3 chia hết cho xn
<=> n=3(thỏa mãn)
b, xn chia hết cho x5
<=> n=5( thỏa mãn)
c, 5x2yn chia hết cho 4x2y2
<=> \(y=2\)(vì đồng nhất hệ số)
d, xnyn+1 chia hết cho x2y5
<=> \(\hept{\begin{cases}n=2\\n+1\le5\end{cases}}< =>\hept{\begin{cases}n=2\\n\le4\end{cases}}=>n=2\)
nhầm d, xnyn+1 chia hết cho x2y5
\(\Leftrightarrow\hept{\begin{cases}n=2\\n+1=5\end{cases}}\Leftrightarrow\hept{\begin{cases}n=2\\n=4\end{cases}}\)( Loại vì n không thể đồng thời nhận 2 giá trị )
\(\Rightarrow n\in\varnothing\)