Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n+1995=a^2,n+2014=b^2\)
Trừ vế theo vế ta được:
\(b^2-a^2=59\)
\(\Leftrightarrow\left(b-a\right)\left(b+a\right)=59\)
Do \(59\)là số nguyên tố và \(b>a\)nên ta chỉ có một trường hợp:
\(\hept{\begin{cases}b-a=1\\b+a=59\end{cases}}\Leftrightarrow\hept{\begin{cases}b=30\\a=29\end{cases}}\)
Khi đó \(n=-1114\).
Để \(\frac{n+6}{18}\) là số tự nhiên => \(n+6⋮18\)=> \(n+6⋮3\)\((1)\)
Để \(\frac{n+5}{15}\)là số tự nhiên => \(n+5⋮15\)=> \(n+5⋮3\)\((2)\)
Từ \((1),(2)\)ta có : \((n+6)-(n+5)⋮3\)
\(\Rightarrow1⋮3\)\((\)vô lý \()\)
Vậy không tồn tại n để \(\frac{n+6}{18}\)và \(\frac{n+5}{15}\)đều là số tự nhiên
=> n+5 và n+30 là 2 số chình phương liền nhau:
Ta có: a2-b2= 25
=> (a-b)(a+b)=25 ; giả sử a=b+1 ( 2 số liên tiếp) thì:
=>(b+1-b)(b+1+b )=25
=>2b=24 => b=12; => a=13
=> a2=169; b2=144
=>n= 144-5=169-30=139;
CHÚC BẠN HỌC TỐT..........
Xét các trường hợp :
- Với n \(\ge\) 2 thì 2n chia hết cho 4 => 2n + 15 = 2n + 4 . 3 + 3 chia 4 dư 3 (sai vì số chính phương chia hết cho 4 hoặc chia 4 dư 1) , loại
- Với n =1 => 2n + 15= 17, loại
- Với n = 0 => 2n + 15=16 , chọn
Vậy n = 0 là thỏa mãn điều kiện để 2n + 15 là số chính phương.
Bài gải:
Chia n làm 3 trường hợp:
Trườn hợp 1: n=0
Trường hợp 2: n=1
Trường hợp 3: n>1
Với n>=2 thì 2^n chia hết cho 4=> 2^n + 15 chia 4 dư 3 ( vô lí vì số chính phương chia hết cho 4 hoặc chia 4 dư 1) --> Loại.
Với n=1 => 2^n+15= 17 --> Loại.
Với n=0 => 2^n+15=16 --> Thỏa mãn.
Vậy chỉ có n=0 là thỏa mãn điều kiện để 2^n+15 là số chính phương.
https://olm.vn/hoi-dap/question/99410.html
Đây là link trang có đáp án. Bạn vào xem cho nhanh nhé
Bài 1: Gọi ước chung lớn nhất của n + 1 và 7n + 4 là d
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}7n+7⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ 7n+ 7 - 7n - 4 ⋮ d
⇒ (7n - 7n) + (7 - 4) ⋮ d ⇒0 + 3 ⋮ d ⇒ 3 ⋮ d ⇒ d \(\in\) Ư(3) = {1; 3}
Nếu n = 3 thì n + 1 ⋮ 3 ⇒ n = 3k - 1 khi đó hai số sẽ không nguyên tố cùng nhau.
Vậy để hai số nguyên tố cùng nhau thì n \(\ne\) 3k - 1
Kết luận: n \(\ne\) 3k - 1