Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để xn-1 - 3x2 ⋮ 2x2 thì xn-1 ⋮ 2x2 và -3x2 ⋮ 2x2
mà -3x2 ⋮ 2x2 => xn-1 ⋮ 2x2
<=> n - 1 ≥ 2
<=> n ≥ 3
Vậy n ≥ 3 thì xn-1 - 3x2 ⋮ 2x2
x^4 -x ^3 + 6x^2 - x + n x^2-x+5 x^2+1 - x^4-x^3+5x^2 x^2-x+n - x^2-x+n 0
ĐỂ x4 - x3 + 6x2 -x \(⋮x^2-x+5\)
\(\Rightarrow x-5=0\Rightarrow x=5\)
b , ta có : \(3x^3+10x^2-5⋮3x+1\)
\(\Rightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)
\(\Rightarrow x\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-4⋮3x+1\)
mà : \(\left(3x+1\right)\left(4x-1\right)⋮3x+1\)
\(\Rightarrow4⋮3x+1\Rightarrow3x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Nếu : 3x + 1 = 1 => x = 0 ( TM )
3x + 1 = -1 => x = -2/3 ( loại )
3x + 1 = 2 => x = 1/3 ( loại )
3x + 1 = -2 => x = -1 ( TM )
3x + 1 = 4 => x = 1 ( TM )
3x + 1 = -1 => x = -5/3 ( loại )
\(\Rightarrow x\in\left\{0;\pm1\right\}\)
a) Áp dụng định lý Bézout ( Bê-du ) , dư của \(f\left(x\right)=x^3+x^2-x+a\)cho x + 2 = x - (-2) là \(f\left(-2\right)\)
Để f(x) chia hết cho x + 2 thì f(-2)=0
\(\Rightarrow\left(-2\right)^3+\left(-2\right)^2-\left(-2\right)+a=0\)
\(-8+4+2+a=0\)
\(a-2=0\)
\(a=2\)
Vậy ...
c) \(\frac{n^3+n^2-n+5}{n+2}=\frac{n^3+2n^2-n^2-2n+n+2+3}{n+2}\)nguyên để \(n^3+n^2-n+5⋮n+2\)
\(\Rightarrow\frac{n^2\left(n+2\right)-n\left(n+2\right)+\left(n+2\right)+3}{n+2}\in Z\)
\(\Rightarrow n^2-n+1+\frac{3}{n+2}\in Z\)
\(n^2,n,1\in Z\Rightarrow\frac{3}{n+2}\in Z\)
\(\Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-5;-3;-1;1\right\}\)
Vậy ...
a) A=5xny3 chia hết cho B=4x3y
ta có:
5xny3 : 4x3y = \(\dfrac{5}{4}\) x n-3 y2
để A \(⋮\) B thì : n - 3 \(\ge\) 0
n \(\ge\) 3
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
\(\left(x^{n-1}-6x^2\right)⋮2x^2\Leftrightarrow n-1\ge2\Leftrightarrow n\ge3\)