Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
1. a) Để phân số có giá trị nguyên thì n + 9 phải chia hết cho n - 6
Ta có: n + 9 chia hết cho n - 6
=> n - 6 + 15 chia hết cho n - 6
=> 15 chia hết cho n - 6.
=> n - 6 thuộc Ư(15) = {1; 3; 5; 15}
=> n thuộc {7; 9; 11; 21}
2. Giả sử \(\frac{12n+1}{30n+2}\)không phải là phân số tối giản
=> 12n + 1 và 30n + 2 có UCLN là d (d > 1)
d là ước chung của 12n + 1 và 30n + 2
=> d là ước của 30n + 2 - 2(12n + 1) = 6n
=> d là ước chung của 12n + 1 và 6n => d là ước của 12n + 1 - 2.6n = 1
d là ước của 1 mà d > 1 (vô lý) => điều giả sử trên sai => đpcm.
chứng minh 12n + 1/30n + 2
gọi a là ƯC của 12n + 1 và 30n + 2
=> 12n + 1 chia hết cho a
=> 12n chia hết cho a
1 chia hết cho a
=> a = 1
vậy 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau
nên 12n + 1/30n + 2 là phân số tối giản (điều phải chứng minh)
+Với n thuộc Z thì n+7 và n+2 là các số nguyên khác 0.
+Giả sử n+7/n+2 chưa tối giản
=>n+7 và n+2 chia hết cho số nguyên tố d
+Vì (n+7) chia hết cho d (bạn viết kí hiệu chia hết nha!!)
(n+2) chia hết cho d
=>(n+7)-(n+2) chia hết cho d
=>n+7-n-2 chia hết cho d
=>5 chia hết cho d
Mà d là số nguyên tố
nên d=5
+Với d=5
=>(n+2) chia hết cho 5
=>n+2=5k(k thuộc N sao)
n =5k-2
Vậy n khác (viết kí hiệu nha) 5k-2( k thuộc N sao), n > -2 thì n+7/n+2 là phân số tối giản.
Chúc bạn học tốt!!
Bạn nhớ k đúng cho mình nha!!
+Với n thuộc Z thì n+7 và n+2 là các số nguyên khác 0.
+Giả sử n+7/n+2 chưa tối giản
=>n+7 và n+2 chia hết cho số nguyên tố d
+Vì (n+7) chia hết cho d
(n+2) chia hết cho d
=>(n+7)-(n+2) chia hết cho d
=>n+7-n-2 chia hết cho d
=>5 chia hết cho d
Mà d là số nguyên tố
nên d=5
+Với d=5
=>(n+2) chia hết cho 5
=>n+2=5k(k thuộc N sao)
n =5k-2
Vậy n khác 5k-2( k thuộc N sao), n > -2 thì n+7/n+2 là phân số tối giản.
tìm n nhỏ nhất nha
\(\frac{7}{n+9};\frac{8}{n+10};....;\frac{11}{n+13}\) tối giản
\(\Leftrightarrow\frac{n+9}{7};\frac{n+10}{8};\frac{n+11}{9};....;\frac{n+13}{11}\)tối giản
\(\Leftrightarrow\frac{n+2}{7};\frac{n+2}{8};......;\frac{n+2}{11}\)tối giản
nên n+2 là số nhỏ nhất nguyên tố cùng nhau với 7;8;...;11
nên: n+2 là số nguyên tố lớn nhất lớn hơn 11
=> n+2=13=> n=11
a) Ta có : \(\frac{7}{n+9}=\frac{7}{\left(n+2\right)+7}\).
Để \(\frac{7}{\left(n+2\right)+7}\)tối giản thì 7 và ( n +2 ) nguyên tố cùng nhau
Tương tự ta có : 8 và (n+2) NTCN
9 và(n+2) NTCN
10 và (n+2) NTCN
11 và (n+2) NTCN
Vậy để \(\frac{7}{n+9};\frac{8}{n+10};...\)tối giản thì : n + 2 phải NTCN với 7;8;9;10;11
Mà n nhỏ nhất nên n+2 là SNT nhỏ nhất > 1
Vậy n + 2= 13 => n = 11
Thiếu đề thì phải ?